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Abstract
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tors can compensate in their education by choosing narrower expertise, but narrowing
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of innovative activity — a greater reliance on teamwork — and negative implications for
growth. I develop a formal model to examine the growth implications of this “knowl-
edge burden mechanism” and generate six testable predictions for innovators. The
model predicts that educational attainment will rise over time and shows that increased
specialization and teamwork follow from a sufficiently rapid increase in the burden of
knowledge. In cross-section, the model predicts that specialization and teamwork will
be greater in deeper areas of knowledge while, surprisingly, educational attainment will
not vary across fields. I test these six predictions using a micro-data set of individual
inventors and find evidence consistent with each prediction. The model can thus provide
a parsimonious explanation for a range of empirical patterns of inventive activity. The
knowledge burden mechanism suggests that the nature of innovation is changing, with
negative implications for long-run economic growth.

∗I wish to thank Pol Antras, Andrei Bremzen, Esther Duflo, Glenn Ellison, Amy Finkelstein, Simon
Johnson, Ben Olken, Michael Piore, Scott Stern and participants at various lunches and seminars for helpful
comments. I am especially grateful to Daron Acemoglu, Abhijit Banerjee, and Sendhil Mullainathan for
their advice and Trevor Hallstein for research assistance. The support of the Social Science Research Coun-
cil’s Program in Applied Economics, with funding provided by the John D. and Catherine T. MacArthur
Foundation, is gratefully acknowledged.



1 Introduction

The importance of technological progress to growth is well accepted, yet the process of

technological progress is not well understood. The recent growth literature, starting with

the seminal contribution of Romer (1990), has made significant strides by considering tech-

nological advances as the output of rational agents operating in an explicit R&D sector.

This approach seems realistic and succeeds in producing an endogenous description of the

evolution of productivity. At the same time, this literature has highlighted the critical role

of assumptions regarding the "knowledge production function", which defines how effort

in R&D is mapped into productivity enhancements. Is growth a steady process where a

given amount of research effort can produce constant productivity growth, or is innovation

"getting harder" in the sense that a given amount of research effort will have a declining

impact on growth over time?

The answer to this question has important implications, not just for the nature of

technological progress, but also for the long-run growth potential of the world economy. If

innovation is getting harder, a view associated with Jones (1995a, 1995b), Kortum (1997),

and Segerstrom (1998), then steady growth in productivity is seen to rely on an ever-

increasing level of innovative effort. Put in stark terms, if the world economy cannot

indefinitely grow its research effort, then productivity growth will slow and, ultimately,

cease. Jones, Kortum, and Segerstrom present a range of empirical evidence consistent

with such a view, which I will review briefly below.

In this paper I investigate, both theoretically and empirically, a mechanism through

which technological progress may become harder with time. I start with the observation

that technology in an economy is associated with a large body of knowledge. Innovators

are not born at the frontier of knowledge; instead, they must undertake education — if one

is to stand on the shoulders of giants, one must first climb up their backs. If technological

progress leads to an accumulation of knowledge, then the educational burden on successive

generations of innovators will increase. Innovators may compensate by choosing narrower

expertise: a "death of the Renaissance Man" effect. This narrowing of expertise reduces

the capabilities of individual innovators, which in turn has implications for the organization

of innovative activity and growth in the economy.

To help motivate this mechanism, consider the invention of the microprocessor. As
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described by Malone (1995), the invention started with the inspiration of a researcher named

Ted Hoff:

[Hoff] had been working with a DEC computer doing circuit design and had

been impressed by how the computer could do such complex tasks...this, he

thought, could be his model for a new type of circuitry.

Hoff, at Intel, teamed up with Stan Mazor and Masatoshi Shima. Together they developed

Hoff’s idea, each working on separate aspects of the architecture. To implement their design,

however, they were forced to turn to another specialist:

Hoff and Mazor didn’t really know how to translate this architecture into a

working chip design. And with that, they didn’t know whether there were any

flaws in their architecture. The project began to lag.

In fact, probably only one person in the world did know how to do the next

step. That was Federico Faggin...

The microprocessor was one person’s inspiration, but four people’s invention. It is the

story of researchers with circumscribed abilities, working in a team, and it helps motivate

the model of innovation and growth explored in this paper.

In the model, presented in Section 2, innovators are specialists who interact with each

other in the implementation of their ideas. The model introduces a “circle of knowledge” — a

continuum of types of knowledge — upon which innovators define their specialties and locate

necessary teammates. Achieving expertise in any area on the circle requires an innovator

to bring herself to the frontier of knowledge in that area, and the difficulty of reaching the

frontier — the burden of knowledge — may increase or decrease over time.

The central choice problem is that of career. At birth, each individual chooses to become

either a production worker or an innovator. If the individual chooses to become an innovator,

then the individual faces the further choice of what specific area of knowledge to learn.

Innovators choose their degree of specialization as a tradeoff between the costs and benefits

of education: greater knowledge leads to increased innovative potential, but it also costs

more to acquire. Innovators also seek to avoid crowding: other things equal, the greater the

density of innovators in a particular area of knowledge, the less expected income each will

earn. The equilibrium defines the educational decisions of innovators — the total amount of
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education they seek, their degree of specialization, and their consequent propensity to form

teams — as well as the allocation of labor between the production and innovation sectors.

Career choices are made in a dynamically evolving economy. The model marries two

established ideas in the growth literature together with the burden of knowledge mecha-

nism introduced in this paper. First, a growing population increases market size, making

innovative activity more valuable and increasing its scale, which attracts workers to the

innovative sector and serves to increase, ceteris paribus, the rate of technological progress.

The importance of introducing such scale effects from a growth perspective was first pointed

out by Jones (1995a) and is well summarized in Jones (1999). In this model, increasing

market size also plays a key role by increasing the marginal value of education, thereby

increasing the amount of education innovators wish to seek. Second, the value of knowledge

may be increasing or decreasing as the economy evolves. This feature captures, in reduced-

form, a broad range of standard arguments in the growth literature: both the fishing-out

ideas of Kortum (1997) and Segerstrom (1998), as well as more optimistic specifications

where knowledge is increasingly useful, as in Romer (1990), Aghion & Howitt (1992), and

Weitzman (1998). An increasing value of knowledge will tend, ceteris paribus, to increase

both the marginal benefit of education and the rate of technological progress. Finally, the

difficulty in reaching the knowledge frontier — the burden of knowledge — may rise or fall as

the economy evolves.

In this framework the same forces that influence long-run growth also influence the

educational decisions of innovators. Indeed, the tight link between individual income possi-

bilities and changes in the knowledge space produces detailed predictions about innovator

behavior on the one hand and aggregate consequences on the other, allowing this model

to explain both micro and aggregate data patterns. The crux of the model is that income

possibilities determine career decisions. Therefore, any increase in the burden of knowledge

cannot be analyzed in isolation but must be weighed against both the value of this knowl-

edge and other income opportunities when innovators make their career choices. Moreover,

any simple intuition that areas of “greater knowledge” require more education and/or more

specialization turns out to have important and empirically relevant qualifications. Along

the balanced growth path, the income possibilities of innovation expand — because market

size and/or the value of ideas are increasing — so that new cohorts will seek more educa-

tion over time. Given this increasing educational attainment, innovators will only become
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more specialized if the burden of knowledge mechanism is sufficiently strong. More subtly,

income arbitrage produces the surprising result that educational attainment will not vary

across technological fields, regardless of variation in the burden of knowledge or innovative

opportunities.

In all the model makes six testable predictions for the behavior of individual innovators.

In time series, the model predicts that (i) educational attainment will be rising while (ii)

specialization and (iii) teamwork will increase only if the burden of knowledge is increasing

at a sufficient rate. In cross-section, the model predicts that (iv) specialization and hence

(v) teamwork will be greater in fields where knowledge is deeper. At the same time, (vi)

educational attainment should show no variation across technological fields.

Section 3 explores the predictions of the model empirically. Using a rich patent data set

(Hall et al. 2001) together with the results of a new data collection exercise to determine the

ages of 55,000 inventors, I am able to develop detailed patent histories for individuals. As

shown in Figure 1, I find that the age at first innovation, which can serve as a proxy measure

for educational attainment, is trending upwards at 0.6 years per decade. This upward age

trend is nearly identical to that found in a study of the ages at which the 20th Century’s

great inventors, including Nobel Prize winners, produced their noted innovations (Jones,

2003). Meanwhile, U.S. team size is seen to be increasing at a remarkably steep rate of

17% per decade, and a direct measure for specialization is increasing by 6% per decade. As

discussed in Section 3, these trends are all robust to a number of controls and in particular

are robust across a wide range of technological categories and research environments.

In cross-section, I find striking support for the model’s perhaps less obvious prediction

that educational attainment will be similar across fields. At the same time, team size and

the specialization measure vary substantially across fields, and, as predicted, vary in a

supportive manner when related to a direct measure of the amount of prior art underlying

each patent.

The model thus serves as a parsimonious explanation for this collection of new facts. The

knowledge-burden mechanism can further serve to explain the existing aggregate data facts

that are debated in the growth literature. First, as shown in a seminal article by Charles

Jones (1995a), R&D employment in leading economies has been rising dramatically, yet

TFP growth has been flat. Second, the average number of patents produced per R&D

worker or R&D dollar has been falling over time across countries (Evenson 1984) and U.S.
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manufacturing industries (Kortum 1993). These aggregate data trends can be understood

as an effect of increasingly narrow expertise, where innovators are becoming less productive

as individuals and are required to work in ever larger teams.

Section 4 of this paper considers several interpretations of the empirical results and

relates them to existing debates in the growth literature. Section 5 offers conclusions and

suggests areas for further research.

2 The Model

The over-arching theme of this model is the emphasis on innovators. I analyze a simple struc-

ture with two sectors: a production sector where competitive firms produce a homogenous

output good and an innovation sector where innovators produce productivity-enhancing

ideas. Workers in the production sector earn a competitive wage while innovators earn

income by licensing their ideas to firms in the production sector. I abstract from physi-

cal capital in the model and focus on the role of human capital in the innovation sector.

Innovators must undertake a costly human capital investment to bring themselves to the

knowledge frontier where they become able to innovate. Innovators face a tradeoff be-

tween the costs of seeking more education and the benefits of achieving a broader degree

of expertise. This tradeoff will be balanced differently by different cohorts as the economy

evolves.

Section 2.1 describes the production sector and Section 2.2 defines individuals’ life-

cycles and preferences. Sections 2.3 and 2.4 focus on innovators. The first describes

the knowledge space, the innovator’s choice of specialty, and the cost of education. The

second considers the process of innovation, the value of innovations, and the evolution of

innovators’ productivity. Section 2.5 defines individuals’ equilibrium choices. Section 2.6

analyzes steady-state growth, and Section 2.7 examines the time-series predictions of the

model. Section 2.8 extends the model to investigate its predictions across technological

areas at a point in time. The predictions of Sections 2.7 and 2.8 are the foundation for the

empirical analysis in Section 3.

2.1 The Production Sector

Competitive firms in the production sector produce a homogenous output good. A firm j

hires an amount of labor, lj(t), to produce output,
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yj(t) = Xj(t)lj(t) (1)

which it sells at the numeraire price, py(t) = 1. Xj(t) ≤ X(t) is the productivity level of

firm j, where X(t) is the leading edge of productivity in the economy, which can be achieved

by any firm with access to the entire set of productive ideas that have been produced by

the innovative sector.

The firm pays workers a wage, w(t), and makes royalty payments per worker of r(t)

on any patented technologies it employs. While patent protection lasts, the monopolist

innovator will charge a firm a fee, per period, equivalent to all the extra output the firm can

produce with the innovation, and the firm will be just willing to pay this fee. Therefore

Xj(t) = X(t) ∀j, and the total output in the economy is:

Y (t) = X(t)LY (t) (2)

The revenues of these competitive firms are dispensed entirely in wage and royalty payments,

X(t)lj(t) = w(t)lj(t) + r(t)lj(t). The competitive wage paid to a production worker is

therefore:

w(t) = X(t)− r(t) (3)

2.2 Workers and Preferences

There is a continuum of workers of measure L(t) in the economy at time t. This population

grows at rate gL. Individuals face a constant hazard rate φ of death. The constant hazard

rate model has well-known properties: the probability of surviving to time t given birth at

time τ is e−φ(t−τ), and a worker’s life expectancy at any point in time is 1/φ.

Individuals are risk-neutral and share a common intertemporal utility function,1

U(τ) =

Z ∞

τ
c(t)e−φ(t−τ)dt (4)

Each individual faces a dynamic budget constraint, da(t)/dt = φa(t) + f(t) − c(t), where

a(t) is her assets, f(t) is her flow of non-interest income, and c(t) is her consumption in

1For simplicity of exposition, I will specify the incomes and expenditures in the model in terms of a
unit-mass of individuals.

6



period t. Note that, for simplicity, I assume that the hazard rate of death serves as both

the rate of time preference and the interest rate in the economy. Individuals are therefore

indifferent to the timing of their consumption; they are also indifferent to the riskiness of

their income stream.

The choice problem of interest in the model is that of career. I assume that individuals

are born without assets and supply a unit of labor inelastically at all points over their

lifetime. From the standard intertemporal budget constraint, the individual’s utility is

equivalent to the present value of her expected lifetime non-interest income. At birth, an

individual decides whether to become a wage worker or an innovator. Wage workers require

no education and their expected utility is simply the discounted flow of the wage payments

they receive:

Uwage (τ) =

Z ∞

τ
w(t)e−φ(t−τ)dt (5)

If an individual i chooses to be an innovator instead, then she must further choose a

specific field of expertise and pay an immediate fixed cost of education, E, to bring herself

to the frontier of knowledge in that area. Having paid this cost, the innovator earns

an expected flow of income, v, by licensing any innovations she produces to firms in the

production sector. In the model, both v and E are specific to the choice of expertise made

by an individual (i). Income and the educational cost will also depend on the time of birth

(τ), and income flows will further depend on the current state of the economy (t). The

expected lifetime utility of an innovator is written generally as,

UR&D
i (τ) =

Z ∞

τ
vi(τ , t)e

−φ(t−τ)dt−Ei(τ) (6)

The structure of the innovator’s educational choice and the functional forms of v and E are

the subject of the next two subsections.

2.3 Knowledge and Education

A type of knowledge is defined by its position, s, on the unit circle. For example, one

segment of the circle might represent electronics, another biochemistry, another economics.

At a point in time, the amount of knowledge at each point on the circle is assumed to be
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the same.2 I define this quantity as D(t).

The prospective innovator chooses an area of expertise: a point, si, on the circle and

a certain distance, bi ∈ [0, 1], to its right. For an innovator born at time τ , the amount of
knowledge the innovator acquires is the chosen breadth of expertise, bi, multiplied by the

prevailing depth of knowledge, D(τ). The educational cost of acquiring this information

is:

Ei(τ) = (biD(τ))
ε (7)

where ε > 0, which says only that learning more requires a greater amount of education. I

make no a priori assumption about whether education costs are convex or concave in the

amount of information the innovator learns.

With the assumption that the depth of knowledge is evenly arrayed around a unit circle,

the total depth of knowledge at a point in time is D(t). In general, the depth of knowledge

will change as innovators produce new ideas. However, while these new ideas serve to

increase the productivity in the economy, X(t), they may or may not increase D(t). I

write,

D(t) = (X(t))δ (8)

with no assumption regarding the sign of δ. It may be natural to assume that the production

of new ideas in the R&D sector leads to an increase inD(t). However, we might also imagine

that new ideas either replace old ideas or simplify ideas so that D(t) may actually fall as

productivity rises. This latter interpretation is consistent with the concept of revolutionary

“paradigm shifts”, which Thomas Kuhn has suggested as the appropriate model of scientific

progress (Kuhn 1962).

sibi

Figure 3.1: The circle of knowledge
2 I will partly relax this assumption when I consider a cross-sectional variation of the model in Section

3.8.
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2.4 Innovation

Once educated, innovators begin to receive innovative ideas. Ideas arrive randomly, with

hazard rate λ for a unit-mass of individuals. When an idea arrives, it comes with two

further properties. The first is the random breadth of expertise, k, required to implement

the idea. The second is the size of the idea, which adds to TFP by an amount γ.3

The required expertise, k, may be greater or less than the inspired innovator’s own

expertise, bi. For example, a statistician might conceive of a new statistical method and be

able to implement the idea solely on the basis of her own expertise. An engineer might have

an idea for a new space shuttle for NASA, but the implementation requires much broader

expertise than the engineer himself possesses. The breadth of the idea k ∈ [0, 1] is drawn
from a smooth distribution function F . It is measured as a distance to the right from an

individual’s location si, so that the implementation of the idea requires expertise over the

segment of the circle [si, si + k]. Therefore, with probability F (bi) the innovator is able to

implement the idea alone, and with probability 1− F (bi) the innovator needs at least one

partner. That is, I allow for the formation of teams.

I assume that the innovator with the idea acts as a monopolist vis-a-vis potential team-

mates so that, by Bertrand reasoning, the inspired innovator receives all profits from the

project. I further assume that once an idea arrives it can be implemented instantaneously

and without any expenditure (in particular, team formation is costless). Therefore, (i) all

projects are profitable, (ii) the inspired, monopolist innovator will receive the entire royalty

stream from the project as personal income, and (iii) any necessary teammates will be just

willing to help without compensation.

The only possible obstacle to implementation is an absence of required expertise. An-

ticipating the equilibrium of this model, innovators’ collective expertise will cover the entire

circle of knowledge, so that all ideas are feasible and therefore all ideas will in fact be im-

plemented. To avoid burdensome notation in the text, I will write the rest of the model

assuming this result. The Appendix considers the general case and establishes this result

as part of any (subgame perfect) equilibrium.

I make two further assumptions regarding team formation. First, the inspired innovator

will choose team members from her own cohort if possible. Second, the innovator assembles

3One can imagine more generally that the size of ideas is random, where γ is the mean size; this inter-
pretation has no effect on the model.
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the minimum number of people necessary to cover the breadth of expertise, k, required to

implement the idea. These last two assumptions are innocuous and are made to permit

explicit analysis of average team size, which is explored in Sections 2.7 and 2.8.

Given that an idea increases TFP by an amount γ, it can be licensed for use by LY

workers, and patent protection lasts for z years, the lump-sum value of the patent is:4

V = γ

Z t+z

t
LY (et)det (9)

Along the balanced growth path, the fraction of production workers, LY (et)/L(et), will be
constant. LY (et) thus grows at gL and we can integrate (9) to find: V = γCLY , where

C = (egLz − 1) /gL, and LY is the mass of production workers at the time of the innovation.

The expected flow of income to an innovator is v = λV , the probability of having an idea

at a point in time times the income the idea generates. Using the definition of V , we can

write v = λγCLY . The expected flow of income can therefore equivalently be understood

as the expected rate at which the innovator adds to TFP, λγ, times the market size for

the innovation, CLY . When considering the time lag between an innovator’s innovations

(Section 2.7) and associated empirical analysis (Section 3), it will be useful to consider λ

and γ separately. However, for the main analysis of the model I wish to emphasize that

the combination of these parameters is the important primitive. I will therefore also define

θ = λγ as a summary measure of innovator productivity.

The parameters λ and γ will in general differ across individuals (i), across cohorts (τ),

and across time (t). Specifically, I assume that λ and γ, and hence θ and v, will depend on

three things: (1) the vintage of knowledge the innovator learns; (2) the current degree of

competition in the innovator’s specialty; and (3) the innovator’s breadth of expertise. In

particular, I write,

λi(τ , t) = X(τ)χλL(t, si)
−σbβλi (10)

γi(τ , t) = X(τ)χγb
βγ
i (11)

4This expression is written assuming the innovator has access to a competitive financial market which will
pay the innovator the lump-sum value of the patent (or an equivalent annuity) in exchange for the patent
rights. If no such market were available, the value of the patent to the innovator would need to reflect the
possibility that the innovator dies before the patent rights expire, in which case V = ϕ

t+z

t
LY (t)e

−φ(t−t)dt.
This variation will have no impact on the main results of the model.
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and therefore

θi(τ , t) = X(τ)χL(t, si)
−σbβi (12)

where χ = χλ + χγ and β = βλ + βγ . X(τ) is the productivity level in the economy at

the innovator’s birth, L(t, si) is the mass of individuals at time t who share the innovator’s

specialty, and bi is the innovator’s breadth of expertise.

These reduced-form specifications capture several key ideas. The parameter χ = χλ +

χγ represents the impact of the state of technology on an innovator’s productivity. It

incorporates the standard ideas in the literature which were alluded to in the introduction:

“fishing-out” hypotheses whereby innovators’ productivity falls as the state of knowledge

advances (χ < 0), and “positive intertemporal spillovers” whereby an improving state of

knowledge makes innovators more productive (χ > 0).5 ,6

The parameter σ represents the impact of crowding on the frequency of an innovator’s

ideas. I assume σ > 0, following standard arguments where innovators partly duplicate

each other’s work. A greater density of workers in the same specialty increases duplication,

reducing the rate at which a specific individual produces a novel idea.

The final parameter, β = βλ + βγ , represents the impact of the breadth of expertise.

A specification with β > 0 suggests simply that greater human capital increases one’s pro-

ductivity. The specific reason I embrace, for the purposes of this model, is that individuals

with broader expertise access a larger set of available knowledge — facts, theories, methods

— on which to build innovations. This will increase their innovative abilities, along the lines

of Weitzman (1998), making them more productive.7

5Note that I am using the state variable X(τ) to represent the effect of both technology and the state
of knowledge on an innovator’s capabilities. We could introduce a second state variable, A(τ), to represent
the state of knowledge and add a separate channel through which the quality of existing ideas influences an
innovator’s abilities. Since the state of knowledge in standard growth models is assumed to be determin-
istically related to the technology level in the economy, adding a separate channel to differentiate between
“ideas” and “technology” will add little insight. When I discuss cross-sectional predictions in Section 3.8,
where it will be useful to think of different knowledge levels across technological areas, I will introduce a
richer specification.

6By writing (12) I assume that only the vintage of knowledge and productivity at birth matter. A
more general specification would allow innovators’ productivity to improve to some degree as technology or
knowledge in the economy improve over their lifetime, but such a specification adds no important intuition
to the model, so it is left out for simplicity.

7There are many other mechanisms through which broader expertise would enhance an innovator’s in-
come. First, a more broadly expert innovator may better evaluate the expected impact and feasibility of
her ideas. She will better select toward high value, successful lines of inquiry, and therefore achieve greater
returns. Second, if assembling teams is costly, innovators will be unwilling to form large teams. More
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With the definitions (10) and (11), I can now explicitly define an innovator’s expected

flow of income,

vi(τ , t) = X(τ)χL(t, si)
−σbβi CLY (t) (13)

2.5 Equilibrium Choices

The choice facing each individual is that of career, which is a one-shot decision made at

birth. Players have infinitesimal mass so that the actions of any specific individual do not

influence the income of others. At the same time, an individual’s income will depend on the

collective decisions of other players. To rule out possible pathological multiple equilibria,

I assume that only strictly positive masses of workers are observable to players, so that

strategies cannot be conditioned on the actions of specific individuals.

Define the set of individuals born at time τ as l(τ), of which a subset lY (τ) choose

the production sector and a subset lR(τ) choose the innovation sector instead. Those

who choose the innovation sector must additionally choose an area of expertise (s, b). In

equilibrium, we require two conditions for each subgame τ :

UR&D
i (si, bi) ≥ UR&D

i (s, b) ∀s, b ∀i ∈ lR(τ) (14)

UR&D
i (si, bi) = Uwage ∀i ∈ lR(τ) ∀j ∈ lY (τ) (15)

The first condition states that no innovator can deviate to any other choice (s, b) and be

better off. The second condition rules out income arbitrage possibilities between the R&D

and production sectors. With the definitions of the model in Sections 2.1 through 2.4, we

can now define the expected income from various choices and hence, with conditions (14)

and (15), the equilibrium outcome.

2.5.1 Production workers

Production workers receive a competitive wage w(t) = X(t)−r(t), where X(t) is the leading
edge of productivity in the economy and r(t) is the royalty payments the firm makes per

broadly expert innovators can rely less on large teams for the implementation of their ideas, making their
ideas less costly to implement. Third, if income is shared across team members, then broader expertise,
which reduces the necessary team size, will bring one a greater share of project income. These last two
effects will lead more narrowly expert innovators to abandon a greater portion of their broad ideas.
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worker to access the latest technologies. To define the flow of royalty payments, note that

the expected creation of royalties in any interval dt is dX. Since patents are protected for

z years, the flow of royalty payments r(t) is then:

Z t

t−z
dX

which is simply X(t)−X(t−z). The wage worker’s expected flow of income at any time t is
then w(t) = X(t)−r(t) = X(t−z). In other words, the wage earned by a production worker
is that portion of productivity which is not patent-protected, which is just the productivity

level of the economy z years previously.

Along a balanced growth path the growth rate in productivity is a constant, g, in which

case X(t − z) = X(t)e−gz. Assuming that g < φ, so that workers have finite expected

income, we integrate (5) to find:

Uwage (τ) =
X(τ)

φ− g
e−gz (16)

2.5.2 Innovators

Using (6) and the equilibrium condition (14), the innovator’s problem is:

max
si,bi

Z ∞

τ
vi(τ , t)e

−φ(t−τ)dt−Ei(τ) (17)

Or, with the definitions of Ei(τ) and vi(τ , t) in (7) and (13),

max
si,bi

Z ∞

τ
X(τ)χL(t, si)

−σbβi CLY (t)e
−φ(t−τ)dt− (biD(τ))ε (18)

First consider the choice of si. In the Appendix I prove that in any subgame perfect

equilibrium of this game, L(t, s) = LR(t) ∀s. That is, innovators evenly array themselves

around the circle of knowledge. The intuition for this result is straightforward. Given

that σ > 0, the integrand and hence expected income are strictly increasing as L(t, si)

falls. In consequence, the innovator seeks to avoid crowding and chooses a location in

the circle of knowledge where the density of innovators is smallest. In equilibrium, no

innovator will wish to deviate from her choice of si, in which case all innovators must array

themselves evenly around the unit circle. The slight complexity in the proof is to consider

— and rule out — the possibility that innovators array themselves so that there are “holes”
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in expertise around the circle and not all projects are feasible to implement. It should be

intuitive that such holes cannot survive in equilibrium: for some innovator there will exist a

small deviation into such a hole that will lead to congestion benefits without reducing the

feasibility of her ideas. See the Appendix for the formal reasoning.

The innovator chooses bi so that the marginal cost of education equals the marginal

expected benefit to her income as an innovator. Differentiating (18) with respect to bi

produces the first order condition:8

β

b∗i
CX(τ)χb∗βi

Z ∞

τ
LR(t)

−σLY (t)e
−φ(t−τ)dt =

ε

b∗i
(b∗iD(τ))

ε (19)

Along the balanced growth path, LR(t) and LY (t) will both grow at a constant rate equal

to the growth rate in population, gL. Using this property to evaluate the integral and rear-

ranging the first order condition, we can characterize the equilibrium choice of bi implicitly

as,

b∗(τ) =
1

D(τ)

µ
v(τ)

φ− (1− σ)gL

β

ε

¶1/ε
(20)

where I write b∗(τ) to acknowledge that innovators in the same cohort face the same maxi-

mization problem and therefore choose identical breadths of expertise.9 Similarly, I write

vi(τ , τ) as v(τ) to represent the expected flow of income to an innovator at the time of

their birth. Given the optimal choice, b∗(τ), we can further define the equilibrium level of

education and the expected utility for an innovator in cohort τ ,

E∗(τ) =
v(τ)

φ− (1− σ)gL

β

ε
(21)

UR&D∗(τ) =
v(τ)

φ− (1− σ)gL

µ
1− β

ε

¶
(22)

Having defined the equilibrium choices of b and s, the remaining pieces of the equilib-

rium consider the labor allocation between the production and innovation sectors and the

8This stationary point defines a (unique) maximum if and only if β < ε, which I will assume for the rest
of the analysis. It is straightforward to show that if β ≥ ε then the innovator will choose the corner solution,
b∗i = 1. Such a corner solution can also emerge when β < ε if the unique maximum described by (19) occurs
where b∗i > 1. These cases, where the innovator learns all available knowledge, are less interesting and will
be left aside in further analysis.

9 I leave the definition of b∗ implicit because this formulation will be convenient for analyzing its growth
path. We can write b∗ explicitly by noting that v (τ) = X (τ)χ LR (τ)

−σ b∗βCLY (τ) and rearranging (20).
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equilibrium determination of the growth rate. These three unknowns (LR(t), LY (t), g) can

be solved in general using three equations. The first is the arbitrage equation in expected

lifetime income, equilibrium condition (15). The second is an accounting relationship for

the allocation of labor, L(t) = LR(t) + LY (t). The third is the steady-state description of

the growth rate, which is defined in the next section.10

2.6 Steady-state Growth

This section investigates the growth implications of the knowledge burden mechanism and

analyzes how this force interacts with other key forces in the determination of growth rates.

Along the balanced growth path, the growth rate in per-capita income is equal to the

growth rate in productivity, g. In particular, the growth rate depends on the number of

innovators and the average productivity of these innovators. If there are LR(t) innovators

active at a point in time and innovators raise productivity in the economy on average at a

rate
_
θ(t), then productivity increases at rate dX/dt =

_
θ(t)LR(t). The growth rate in the

economy is then,

g =

_
θ(t)LR(t)

X(t)
(23)

This expression is mechanical and holds both inside and outside of steady-state. On

the balanced growth path, where g is constant, we can take logs and differentiate with

respect to time to see that g = g_
θ
+ gL. The steady-state growth rate is a function of

the rate of population growth and the evolution of average innovator productivity. Using

the equilibrium relationships we have previously derived, we can express g_
θ
as a function

of g and various exogenously specified elasticities. The derivation is straightforward but

uninformative and is presented in the Appendix. The steady-state growth rate derived

there is,

g =
1− σ

1− χ− β(1ε − δ)
gL (24)

which assumes that χ + β(1ε − δ) < 1. This result, with its parametric condition, defines

the growth rate as the outcome of several important forces. The parameter χ, as discussed
10Along the balanced growth path, the labor share devoted to each sector is, in the steady-state equilibrium,

a constant fraction of the population. Since both the growth results and the equilibrium results within the
innovation sector, which will be tested in Section 3, can be solved for without reference to the cross-sector
labor allocation, for brevity this piece of the equilibrium will not be explicitly examined in further analysis.
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above, represents standard ideas in the growth literature whereby the productivity of in-

novators may increase as they gain access to new technologies and new ideas (χ > 0) or

decrease if innovators are fishing out ideas (χ < 0). The larger χ - the greater the value of

new knowledge - the greater the growth rate, as is seen in (24). The parameter σ repre-

sents the degree to which increased research effort serves to duplicate existing effort. As σ

approaches 1, research effort becomes increasingly congestive and the growth rate will tend

toward zero.

The implications of an increasing burden of knowledge are contained in the term β(1ε−δ).
We can understand this term clearly by first considering the growth in the breadth of

expertise. As shown in the Appendix in the derivation of (24),

gb∗ =

µ
1

ε
− δ

¶
g (25)

This result implies that, on the balanced growth path, new cohorts of innovators become

more specialized with time if and only if δ > 1/ε. The first parameter, δ, is the elasticity of

the depth of knowledge with respect to the level of technology. The second parameter, ε, is

the elasticity of the cost of education with respect to the amount of knowledge an innovator

learns. This specialization condition is intuitive: it says that people will specialize more with

time if the depth of knowledge in the economy rises relatively quickly given the ease with

which knowledge can be learned. If this condition is satisfied, we will witness the “death

of the Renaissance Man” along the growth path (gb∗ < 0). The impact of specialization

on growth will be large or small depending on the value of β (see (24)), the elasticity of

innovators’ productivity with respect to their breadth of expertise.

The growth rate given in (24) also shows that growth in per-capita income will depend

on growth in the population (gL). This is the standard Jones (1995b) style result, where

increasing effort is needed to produce steady-state growth. A growing population provides

both the motive — increasing market size — and the means for innovative effort to grow at

an exponential rate.

The alternative, Romer (1990) style result, where growth can be sustained without an

increase in effort, is obtained in the knife-edge case where χ+β(1ε−δ) = 1. This parametric
condition implies that the productivity of innovators increases in exact proportion with the

productivity in the economy; hence, growth can be sustained with a fixed amount of effort
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(i.e. without population growth, gL = 0).11 Essentially, if we wish to preserve steady-

state growth without demanding increasing innovative effort, then the greater the growth

in the burden of knowledge, the greater must be the growth in the value of knowledge to

compensate. Therefore, while not dispositive of other mechanisms, we see that the burden

of knowledge channel asks more of other mechanisms if we wish to preserve the possibility

of growth in the very long run. The parametric independence of the burden of knowledge

channel also leads us to specific, testable predictions that are independent of other stories.

These predictions are defined in the next two sections.

2.7 Time Series Predictions

In addition to its predictions for the evolution of specialization (equation (25)), the model

makes explicit predictions regarding the amount of education innovators seek and their

propensity to form teams.

Consider education first. Since education is valuable to innovators and this value is

complementary to growing income possibilities in the innovative sector — due to increasing

market size if nothing else — innovator cohorts will seek more education over time. In

equilibrium the optimal amount of education (equation (21)) is a fixed fraction of the

innovator’s lifetime income. As the economy grows, individual incomes grow at rate g. In

consequence, the amount of education innovators seek also grows at rate g.

gE∗ = g (26)

This is seen formally by taking logs in (21), differentiating with respect to time, and noting

that v grows at rate g. The reason educational attainment grows at exactly the same

rate as per-capita income comes from the Cobb-Douglas nature of the innovator’s choice

problem. The innovator pays an additive cost to acquire b, the breadth of expertise, which

is an isoelastic input to the innovator’s “production function”, v. As is well known from

the Cobb-Douglas case, the expenditure share on the input is a constant fraction of the

income. Hence, as the income grows, the expenditure on the input grows at an equivalent

rate.
11However, by the same token, if the population is increasing, then growth rates will now explode (consider

(24) with gL > 0 as χ+ β( 1
ε
− δ)→ 1). This is the usual “scale effects” problem, familiar from the growth

literature (see Jones 1999), which casts some doubt on the relevance of such a knife-edge case.
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Note that increasing educational attainment in this model is not driven by an increasing

educational burden: rather, it is driven by the expanding benefits that education affords.

Furthermore, the tendency to increase educational attainment over time implies that the

breadth of expertise will increase in the absence of knowledge accumulation. This provides

intuition for why δ > 1/ε, rather than the weaker condition δ > 0, is required for the

breadth of expertise to decline on the growth path.

Next consider the evolution of average team size. Recall that k, the breadth of expertise

required to implement an idea, has a smooth distribution function F (k). A cohort with

breadth of expertise b will therefore produce a team of size 1 with probability F (b), a team

of size 2 with probability F (2b)− F (b), and so on.12 The maximum team size in a cohort

with breadth of expertise b is defined by n = d(1/b). It is easy to show that expected team
size is,13

team(b) = n−
n−1X
j=1

F (jb) (27)

where j indexes a particular realization of team size. Differentiating (27) with respect to

b shows that,

dteam(b)

db
= −

n−1X
j=1

jf(jb) (28)

where f(k) = dF/dk is the probability density function corresponding to F . Given that a

density function is weakly positive at any point, we see that team size is weakly increasing as

b falls. This result should seem intuitive: more specialized workers rely more on teamwork

for the implementation of their ideas.14

12Recall that teams are formed within cohorts if possible and that teams are formed with the minimum
possible number of individuals (see Section 2.4). Since individuals allocate themselves evenly around the
circle in any cohort, any necessary teammates are always available within one’s own cohort. This implies
that teams are formed from individuals with identical choices of b, b∗(τ). Since teams are formed from the
minimum number of individuals, the implementation of any idea k requires d(k/b) team members; that is,
k/b rounded up to the nearest integer.
13The expected team size is team(b) = 1F (b) + 2(F (2b)− F (b)) + ...+ n(1− F ((n− 1)b)
Collecting terms in this expression produces the expression in the text.
14One might wonder about a more general case where the distribution F is parameterized by the breadth

of expertise, b. In particular, we might imagine that more narrowly educated individuals will have a narrower
range of inspiration (smaller average k). I explore this possibility formally in the Appendix and derive there
a generalized condition for team size to increase as specialization increases. The intuition, which is shown
clearly for a uniform distribution, is that team size will increase with specialization as long as the “reach”
of innovators (the breadth of their creativity) does not decline as rapidly as their “grasp” (the breadth of
their personal expertise). See the Appendix for details.
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Finally, consider the time lag between two innovations in which the same innovator is

involved. Given an innovation at time t, the expected lag conditional on witnessing an

additional innovation before death is:15

lag =
1

λteam(b) + φ
(29)

Ceteris paribus, the expected lag decreases as specialization and hence team size increase.

As people become more specialized, there is increasing demand for teammates in the imple-

mentation of ideas; there are more opportunities for each person and the time lag between

innovations drops. More generally, the evolution of the raw arrival rate of innovative ideas,

λ, may reinforce or overturn the implications of increasing specialization. Since the evo-

lution of λ along the growth path is ambiguous in the model, the model makes no simple

prediction about the evolution in the lag. At the same time, should we find that increasing

team size is not related to decreasing lags, the model suggests that the raw arrival rate of

ideas must be declining; this interpretation will be helpful when we consider the empirical

results.

In sum, the model predicts that (1) education is increasing over time; (2) specialization

is increasing over time iff δ > 1/ε, and (3) team size is increasing over time iff δ > 1/ε. The

model makes no simple prediction regarding the time lag between an innovator’s innovations.

2.8 Cross-sectional Predictions

In this section I extend the model to consider variations across technological areas. The

extension considers J unit circles of knowledge in place of a single circle. I assume that

the elasticity parameters are the same across all areas of knowledge, while each circle has a

specific depth of knowledge Dj and a separate parameter Aj , which represents the relative

productivity of knowledge in that area — whether the area is hot or cold. The structure

of the model is as before, with two modifications. First, the difficulty of reaching the

knowledge frontier will differ across technological areas. The educational cost for each area

15To see this, consider that if individuals in a cohort of measure l each produce innovations with hazard
rate λ, then the cohort will produce in expectation lλdt innovations in an interval dt. The number of
innovators needed to implement these innovations will be (lλdt) team(b), while the supply of innovators is
l. The probability that a single innovator will become involved in a project is therefore (λdt) team(b), so
that the individual’s hazard rate is h = λteam(b). The average lag we witness is not 1/h however, but must
consider the possibility that the innovator dies and so no additional innovation occurs. Hence, the expected
lag is 1/(h+ φ), as indicated in equation (29).
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j is:

Eij(τ) = (biDj(τ))
ε (30)

Second, an innovator’s productivity will depend on the characteristics of the technological

area. I redefine θ as

θij(t, τ) = Aj(t)X(τ)
χLj(t, sij)

−σbβij (31)

This specification differs in two ways from that in equation (12). First, the congestion

effects are now specific to the particular technological area, which is indicated by adding

the subscript j to L(t, si). Second, I add the new parameter, Aj(t), to indicate sector

specific research opportunities. Innovators’ inspirations are drawn from a distribution

Fj [sij , sij + 1], so that all ideas from an innovator operating in area j are implementable

using expertise within that circle of knowledge.

The innovator’s maximization problem is solved just as in Section 2.5, only we now con-

sider the choice problem within a particular area of knowledge j. Congestion externalities

imply that innovators evenly array themselves within any circle of knowledge, and the first

order condition for b∗ij becomes:

β

b∗ij
CX(τ)χb∗βi

Z ∞

τ
Aj(t)LRj(t)

−σLY (t)e
−φ(t−τ)dt =

ε

b∗ij

¡
b∗ijDj(τ)

¢ε (32)

Allowing Aj(t) to grow at a sector specific rate, gAj , we find the following three results:

b∗j (τ) =
1

Dj(τ)

µ
vj(τ)

φ− (1− σ)gL − gAj

β

ε

¶1/ε
(33)

E∗j (τ) =
vj(τ)

φ− (1− σ)gL − gAj

β

ε
(34)

U∗j (τ) =
vj(τ)

φ− (1− σ)gL − gAj

µ
1− β

ε

¶
(35)

The central cross-sectional implications are seen directly. Income arbitrage across sec-

tors implies that the U∗j (τ) = U∗(τ) ∀j. This in turn implies that E∗j (τ) = E∗ (τ) ∀j.
In other words, regardless of the depth of knowledge in a given sector or the innovation
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opportunities there, innovators will seek the same amount of education. Intuitively, inno-

vators allocate themselves across sectors such that differences in the degree of congestion

will offset the variation in technological opportunities or educational burden. Once income

is equated across sectors, innovators acquire the same total education because their optimal

amount of education is a constant fraction of their expected income. The model thus makes

the perhaps surprising dual prediction that successive cohorts of innovators will choose an

increasing amount of education, while a given cohort will choose an identical amount of

education, regardless of difference in costs and opportunities across sectors.

Finally, while we expect no variation in the level of education across sectors, we do expect

differences in specialization. Given income arbitrage, we can compare the specialization

decisions across two sectors, j and j0. Using (33) we see directly that,

b∗j (τ)
b∗j0(τ)

=
Dj0(τ)

Dj(τ)
(36)

Specialization will be greater where the depth of knowledge is greater. In consequence,

team size will also be greater where the depth of knowledge is greater.

In sum, the model predicts in cross-section that: (1) there will be no difference in the

amount of education; (2) specialization will be greater where the depth of knowledge is

greater; (3) team size will be greater where the depth of knowledge is greater.

3 Econometric Evidence

Sections 2.7 and 2.8 motivate a number of investigations. The goal of the empirical work

is descriptive: to examine a range of first-order facts that, together, shed light on these

predictions and the model’s underlying parameters. Using an augmented patent data set,

we will be able to examine four outcomes in particular:

1. Team size

2. Age at first innovation

3. Specialization, and

4. The time lag between innovations
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The data is described in the following subsection. An investigation of basic time trends

and cross-sectional results follow. Section 4 will consider interpretations of the new results

as a whole and relate them to existing facts about innovation and growth. Together they

paint a multi-dimensional picture that is consistent with a rapidly increasing burden of

knowledge.

3.1 Data

I make extensive use of a patent data set put together by Hall, Jaffe, and Trajtenberg (Hall

et al. 2001). This data set contains every utility patent issued by the United States Patent

and Trademark Office (USPTO) between 1963 and 1999. The available information for

each patent includes: (i) the grant date and application year, and (ii) the technological

category. The technological category is provided at various levels of abstraction: a 414

main patent class definition used by the USPTO as well as more organized 36-category and

6-category measures created by Hall et al. (The 36-category and 6-category measures are

described in Table 3.5.) For patents granted after 1975, the data set includes additionally:

(iii) every patent citation made by each patent, and (iv) the names and addresses of the

inventors listed with each patent. There are 2.9 million patents in the entire data set, with

2.1 million patents in the 1975-1999 period. See Figure 4.1.

1963 1975 2000

0.8 million patents
Data includes (i), (ii)

2.1 million patents
Data includes (i), (ii), (iii), (iv)

Figure 4.1: Summary of Available Data

Using the data available over the 1975-1999 time period, we can define two useful mea-

sures directly:

• Team Size. The number of inventors listed with each patent.

• Time Lag. The delay between consecutive patent applications from the same inventor.

For the latter measure, we identify inventors by their last name, first name, and middle

initial and then build detailed patent histories for each individual.

We can also define two more approximate measures that will be useful for analysis:
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• Tree Size. The size of the citations “tree” behind any patent. Any given patent

will cite a number of other patents, which will in turn cite further patents, and so

on. For the purposes of cross-sectional analysis, the number of nodes in a patent’s

backwards-looking patent tree serves as a proxy measure for the amount of underlying

knowledge.

• Field Jump. The probability that an innovator switches technological areas between
consecutive patent applications. This can serve as a proxy measure for the specializa-

tion of innovators. The more specialized you are, the less capable you are of switching

fields.

A limitation of this last measure is that, since technological categories are assigned to

patents and not to innovators, inferring an innovator’s specific field of expertise is difficult

when innovators work in teams. For inventors who work in teams, the relation between

specialization and field jump is in fact ambiguous: as inventors become more specialized and

work in larger teams, they may jump as regularly as they did before. For the specialization

analysis we will therefore focus on solo inventors, for whom increased specialization is always

associated with a decreased capability of switching fields.

Finally, we would like to investigate the age at first innovation. Unfortunately, in-

ventors’ dates of birth are not available in the data set, nor from the USPTO generally.

However, using name and zip code information it was possible to attain birth date infor-

mation for a large subset of inventors through a public website, www.AnyBirthday.com.

AnyBirthday.com uses public records and contains birth date information for 135 million

Americans. The website requires a name and zip code to produce a match. Using a java

program to repeatedly query the website, it was found that, of the 224,152 inventors for

whom the patent data included a zip code, AnyBirthday.com produced a unique match in

56,281 cases. The age data subset and associated selection issues are discussed in detail in

the Data Appendix. The analysis there shows that the age subset is not a random sample

of the overall innovator population. This caveat should be kept in mind when examining

the age results, although it is mitigated by the fact that the differences between the groups

become small when explained by other observables, controlling for these observables in the

age regressions has little effect, and the results for team size, specialization and time lag

persist when looking in the age subset. See the discussion in the Data Appendix.
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3.2 Time series results

I consider the evolution over time of our four outcomes of interest. Figure 1 presents the

basic data while Tables 3.1 through 3.4 examine the time trends in more detail.

Consider team size first. The upper left panel of Figure 1 shows that team size is

increasing at a rapid rate, rising from an average of 1.70 in 1975 to 2.25 at the end of the

period, for a 32% increase overall. Table 3.1 explores this trend further by performing

regressions relating team size to application year, and we see that the time trend is robust

to a number of controls. Controlling for compositional effects shows that any trends into

certain technological categories or towards patents from abroad have little effect. Repeating

the regressions separately for patents from domestic versus foreign sources shows that the

domestic trend is steeper, though team size is rising substantially regardless of source.

Repeating the time trend regression individually for each of the 36 different technological

categories defined by Hall et al. shows that the upward trend in team size is positive and

highly significant in every single technological category. Running the regressions separately

by “assignee code” to control for the type of institution that owns the patent rights shows

that the upward trend also prevails in each of the seven ownership categories identified

in the data, indicating that the trend is robust across corporate, government, and other

research settings, both in the U.S. and abroad.16 In short, we find an upward trend in

team size that is both general and remarkably steep.

Next consider the age at first innovation. Note that we define an innovator’s “first”

innovation as the first time they appear in the data set. Since we cannot witness individuals’

patents before 1975, this definition is dubious for (i) older individuals, and (ii) observations

of “first” innovations that occur close to 1975. To deal with these two problems, I will

limit the analysis to those people who appear for the first time in the data set between the

ages of 25 and 35 and after 1985. The upper right panel of Figure 4.2 plots the average age

over time, where we see a strong upward trend. The basic time trend in Table 4.2 shows

an average increase in age at a rate of 0.66 years per decade. Controlling for compositional

biases due to shifts in technological fields or team size has no effect on the estimates. The

results are also similar when looking at different age windows.17 Analysis of trends within

16Table A.2 describes the ownership assignment categories.
17The table reports results for the 23 to 33 age window as well. In results not reported, I find that the

trend is similar across subsets of these windows: ages 23-28, 25-30, 31-35, et cetera. Furthermore, there is
no upward trend when looking at age windows beginning at age 35.
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technological categories shows that the upward trend in age is quite general. Smaller

sample sizes tend to reduce significance when the data is finely cut, but an upward age

trend is found in all 6 technology classes using Hall et al’s 6-category measure, and in 29 of

36 categories when using their 36-category measure. The upward age trend also persists

across all patent ownership classifications.

Now we turn to specialization. The specialization measure considers the probability

that an innovator switches fields between consecutive innovations. Before looking at the

raw data, it is necessary to consider a truncation problem that may bias us toward finding

increased specialization over time. The limited window of our observations (1975-1999)

means that the maximum possible time lag between consecutive patents by an innovator is

largest in 1975 and smallest in 1999. This introduces a downward bias over time in the

lag between innovations. It is intuitive, and it turns out in the data, that people are more

likely to jump fields the longer they go between innovations.18 Mechanically shorter lags

as we move closer to 1999 can therefore produce an apparent increase in specialization. To

combat this problem, I make use of a conservative and transparent strategy. I restrict the

analysis to a subset of the data that contains only consecutive innovations which were made

within the same window of time. In particular, we will look only at consecutive innovations

when the second application comes within 3 years of the first. Furthermore, we will look

only at innovations which were granted within 3 years of the application.19 This strategy

eliminates the bias problem at the cost of limiting our data analysis to the 1975-1993 period

and making our results applicable only to the sub-sample of “faster” innovators.20 The

lower right panel of Figure 4.2 shows the trend from 1975-1993.

Table 4.3 considers the trend in specialization with and without this corrective strategy.

The results there, together with the graphical presentation in Figure 4.2, indicate a smooth

18An interpretation consistent with the spirit of the model is that people need time to reeducate themselves
when they jump fields, hence a field jump is associated with a larger time lag.
19Looking only at patents where the second application came within 3 years limits our analysis to those

cases where the first application was made before 1997. However, a second issue is that patents are granted
with a delay — 2 years on average — and only patents that have been granted appear in the data. For a first
patent applied for in 1996, it is therefore much more likely that we will witness a second patent applied for
in 1997 than one applied for in 1999 — introducing further downward bias in the data. To deal completely
with the truncation problem, we will therefore further limit ourselves to patents which were granted within
3 years of their application, which means that we will only look at the period 1975-1993.
20These restrictions maintain a significant percentage of the original sample. For example, of the 111,832

people who applied successfully for patents in 1975, 81,955 of them received a second patent prior to 2000.
Of these 81,955 people for whom we can witness a time lag between applications, 79.8% made their next
application within three years. Of those, 88.5% were granted both patents within three years of application.
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decrease in the probability of switching fields. The decline is again quite steep. Using

the central estimate for the trend of -.003, we can interpret a 6% increase in specialization

every ten years. Note that our main results, and Figure 4.2, use the 414-category measure

for technology to determine whether a field switch has occurred. This is our most accurate

measure of technological field (Hall et al.’s measures are aggregations of it), but the results

are not influenced by the choice of field measure. Note in particular that the percentage

trend is robust to the choice of the 6, 36, or 414 category measure for technology — the

trend is approximately 6% per decade for all three. Including controls for U.S. patents,

the application time lag, ownership status, and the technological class of the initial patent

has little effect. Furthermore, looking for trends within each of Hall et al.’s 36 categories,

we find that the probability of switching fields is declining in 34 of the 36; the decline is

statistically significant in 20. In sum, we see a robust and strongly decreasing tendency for

solo innovators to switch fields.

Finally, I consider the time lag between an innovator’s innovations. The truncation bias

in the time lag described above, which had little effect with specialization, is of course crucial

here, so we employ the same corrective strategy and look only at the 1975-1993 period and

the sub-sample of “faster” innovators. The lower left panel of Figure 4.2 presents the

data graphically and Table 4.4 considers the trend with and without various controls. The

regressions show a mild upward trend, but this should be viewed skeptically given the clearly

cyclical behavior we see in the graph. Considering the coefficients on various controls, we

see that bigger teams innovate faster and that part of the mild upward trend is accounted

for by a composition effect — innovators switching into fields where the delay is longer.

What is most interesting about the time lag data becomes apparent only when we look at

trends within technological categories. Here we find a richer story: Most fields (19 of 36)

show a significant decrease in the average lag between innovations. A smaller number (11

of 36) show a significant increase.21 Overall, I conclude that the average time lag between

an innovator’s patent applications, unlike the other outcomes of interest, shows no decisive

trend; rather, trends in time lags are cycling and differ strongly across technological areas.

21The fact that the overall trend is upward indicates that this group of 11 is pulling relatively strongly.
Upon closer examination we find that the heavyweights among these eleven are Organic Compounds (#14),
Drugs (#31), and Biotechnology (#33) — all areas related to the pharmaceutical industry. This result is
consistent with Henderson & Cockburn’s (1996) finding that researchers in the pharmaceutical industry are
having a greater difficulty in producing innovations over time.
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3.3 Cross-section results

For a first look at the data in cross-section, Table 4.5 presents a simple comparison of

means across the 6 and 36 technological categories of Hall et al (2001). The middle column

in the table presents the mean age at first innovation, and the data shows a remarkable

consistency across technological categories. In 30 of the 36 categories, an innovator’s first

innovation tends to come at age 29. The lowest mean age among the 36 categories is 28.8,

and the highest is 31.1, though this last relies on only 12 observations and is an outlier with

regard to the others. The table shows that regardless of whether the invention comes in

“Nuclear & X-rays”, “Furniture, House Fixtures”, “Organic Compounds”, or “Information

Storage”, the mean age at first innovation is nearly the same. According to the cross-

sectional variation of the model, this is what we would expect. Given income arbitrage,

innovators expand their breadth of expertise in shallow areas of knowledge and focus their

breadth of knowledge in deep areas of knowledge so that their educational investment does

not differ across fields.22

The next columns of the table consider the average team size. Here we see large dif-

ferences across technological areas. The largest average team size, 2.90 for the “Drugs”

subcategory, is over twice that of the smallest, 1.41 for the “Amusement Devices” subcate-

gory.

Finally, the last columns of the table consider the probability that a solo innovator will

switch sub-categories between innovations. Here, as with team size and unlike the age at

first innovation, we see large differences across technological areas. This variation is again

consistent with the predictions of the model. At the same time, this basic, cross-sectional

variation in the probability of field jump is difficult to interpret: the probability of field

jump will be tied to how broadly a technological category happens to be defined, which

may vary to a large degree across categories.

I can go further by using a direct measure of the quantity of knowledge underlying a

patent. In particular, I can analyze in cross-section what an increase in the knowledge

measure implies for our outcomes of interest.

22These results can also be considered in a regression format. Pooling cross-sections and using application
year dummies to take care of trends, the results are extremely similar. One can also adjust the time at first
innovation by subtracting category-specific estimates of the time lag to get a closer estimate of an indi-

vidual’s education. One can also look at different age windows. The result that ages are nearly identical
across fields is highly robust.
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For a continuous measure of the quantity of knowledge I will use the logarithm of the

number of nodes (i.e., patents) in the citation “tree” behind any patent.23 As usual,

there is a truncation issue that needs to be considered: the data set does not contain

citation information for patents issued before 1975, so we tend to see the recent part of the

tree. The measure of underlying knowledge is then noisier the closer we are to 1975, and

I will therefore focus on cross-sections later in the time period. A second issue is that the

average tree size and its variance grow extremely rapidly in the time window, which makes it

difficult to compare data across cross-sections without a normalized measure. Two obvious

normalizations are: (1) a dummy for whether the tree size is greater than the within-

period median; (2) the difference from the within-period mean tree size, normalized by the

within-period standard deviation. Results are reported using the latter definition, as it is

informationally richer, though either method shows similar results.

Table 3.6 examines the relationship between team size and tree size in pooled cross-

sections, with and without various controls. I add a quadratic term for the variation in

team size to help capture evident curvature, and we see that team size rises at an increasing

rate as the measure of knowledge depth increases. For innovations with larger citation

trees, the rise in team size is particularly strong. With very deep knowledge trees, an

increase of one standard deviation in the tree size is associated with an average increase

in team size of one person. The table shows that the cross-sectional relationship holds

for domestic and foreign-source patents and when controlling for technological category, so

that the variation appears both within fields and across them. Technological controls are

perhaps best left out, however, since the variations in mean tree size across technological

category may be equally of interest. Finally, we might be concerned that bigger teams

simply have a greater propensity to cite, which results in larger trees. This concern proves

unwarranted. Controlling for the variation in the direct citations made by each patent, we

find that relationship actually strengthens. In fact, we see that bigger teams tend to cite

23The distribution of the raw node count within cross-section is highly skewed — the mean is far above the
median, so that upper tail outliers can dominate the analysis. I therefore use the natural log of the node
count, which serves to contain the upper tail. A (loose) theoretical justification is knowledge depreciation:
distant layers of the tree are less relevant to a patent than nearer layers, so there is a natural diminishing
impact as nodes grow more distant. The diminishing impact of the large, distant layers, which dominate
the node counts, is captured loosely by taking logs. Noting that the basic results are similar when we use
the median-based measure of knowledge depth (a dummy for whether the raw node count is above or below
the median, which is independent of any monotonic transform of the node count) we can be reasonably
comfortable with the log measure.
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less. This result gives us greater faith in the causative arrow implied by the regressions.

Next we turn to the age at first innovation. Table 3.7 examines, in pooled cross-

sections, the relationship between age and knowledge for those individuals for whom we

can be confident that they are innovating for the first time (see discussion above). The

general conclusion from the table is that we must work hard to find a relationship, and at

its largest it is very small. It is not robust to the specific age window, is reduced when

controlling for the technological category, and disappears when controlling for the number

of direct citations made. Taking a coefficient of 0.1 as the maximum estimate from the

table, we find that an increase of one standard deviation in the knowledge measure leads to

a 0.1 year increase in age. This coefficient may be attenuated given that our proxy measure

of knowledge is, at best, noisy, but I conclude that there is at most only a weak relationship

between the amount of knowledge underlying a patent and the age at first innovation.

Finally, Table 3.8 considers the relationship between the probability of field jump and

the knowledge measure. The table shows a robust negative relationship: solo innovators

are less likely to jump fields when their initial patent has a larger node count. If we identify

a larger node count with a deeper area of knowledge, then this negative correlation is again

consistent with the predictions of the model. However, I place less emphasis on this result.

The fact that the node count captures the recent part of the tree means that the measure

is likely correlated not just with the total underlying knowledge but also with the recent

ease of innovation. This effect could also explain the negative correlation. Innovators will

be less likely to leave a fruitful area, which will be registered as a decreased probability of

jumping fields.

3.4 Interpretations

I have assembled a collection of new facts, motivated by the model. This section considers

these facts as a whole to see whether they are consistent with the model and what they say

about other models of growth more generally.

The model predicts that successive cohorts of innovators will seek more education, be-

cause education is valuable to innovators and its value increases as the economy grows. The

model also predicts that, due to income arbitrage, innovators will seek the same amount of

education across widely different areas of knowledge, regardless of variations in the depth

of knowledge or innovative opportunities. These dual predictions find strong support in
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the data.

Second, the model indicates that if knowledge is accumulating at a sufficient rate and

education is sufficiently costly (so that εδ > 1), then innovators will seek a greater degree

of specialization over time. Increasing specialization will result in greater teamwork as

innovators become more interdependent in the implementation of their ideas. In cross-

section, specialization and team size are predicted to vary across fields and, in particular, to

be greater where the depth of knowledge is greater. These time-series and cross-sectional

predictions all find consistent empirical support. With an increasing burden of knowledge,

the model indicates pessimistic predictions for growth, as were discussed in Section 2.6.

How does a story of increasing knowledge burden do with the data aggregates currently

debated in the growth literature? First of all, as indicated in Section 2.6, the knowledge

burden mechanism can serve as a possible explanation for why high growth rates in the

number of R&D workers have not led to increases in rates of TFP growth. More interesting

perhaps is the drop in patent production per active researcher, which has been documented

across a range of countries and industries and may go as far as 1900 and even before

(Machlup 1962). Certainly, not all researchers are engaging in patentable activities, and

it is possible that much of this trend is explained by a relatively rapid growth of research

in basic science.24 However, the results here indicate that among those specific individuals

who produce patentable innovations, the ratio of patents to individuals is in fact declining.

In particular, the recent drop in patents per U.S. R&D worker, a drop of about 50% since

1975 (see Segerstrom 1998), is roughly consistent in magnitude with the rise in team size

over that period. With the time lag between innovations showing little if any deterministic

trend, we have a simple explanation for where these extra innovators have recently been

going — into bigger teams.

What of other stories? As emphasized in Section 2.6, the knowledge burden channel is

not dispositive of other mechanisms, which operate independently and may also be impor-

tant to growth. At the same time, it is worth considering briefly whether popular stories

in the growth literature can serve as alternate explanations for the facts collected in this

paper and, likewise, whether these new facts can add support to these popular stories.

First, models that explain away scale effects through an expanding product space (e.g.

24Such an explanation could be inferred from the observations of Mokyr (1990), for example, who sees an
increasing role for basic science as a foundation for technological advance.
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Young 1998) cannot obviously explain many of these facts. These models also have a flavor

of "specialization" in that they envision an increasing number of markets with localized

knowledge as population increases; however, expanding team size and rising ages at first

innovation seem outside their predictive thrust, as do the cross-sectional results. Moreover,

expanding product space models do not on their own explain the declining number of patents

per researcher.

Models that avoid scale effects through the evolution of the quality of an innovator’s ideas

(i.e. “fishing out” type stories) can do well with the data aggregates, but they do not provide

obvious first-order explanations for the team size, age, or specialization data. At the same

time, there may be some indirect evidence that successful ideas are in fact harder to come by.

To see this, consider that, given a fixed arrival rate of ideas λ, an increase in specialization

in the model predicts a decrease in the time lag between innovators’ innovations: innovators

become more interdependent so that they share in larger numbers of projects.25 In the

data, innovators in most technological classes do show a decrease in the lag over time, but a

large minority of technological categories show an upward trend in time lag, and the overall

behavior is cyclical. Why don’t we see a strong drop in the time lag? One explanation

is that the underlying arrival rate of ideas, λ, may be declining. From equation (10), we

see three possible explanations for such a decline. First, this result is consistent with the

negative impact of narrowing expertise on the frequency of an innovators ideas (βλ > 0).

In this sense, we need look no further than the knowledge burden mechanism to explain

this result. However, it is also consistent with a “fishing out” problem (χλ < 0). Finally,

it is consistent with an increase in competition (σ > 0).

Competition effects may present a more complete alternative explanation for the range

of data. If we think of the innovation process as a series of increasingly competitive

patent races, we can explain the time lag results and go further as well. As market size

grows, patents become more valuable. Competition within patent lines will increase and

we will consequently see more “losers”. This can explain an increasing time lag and a

drop in patent counts per active innovator. Team sizes, insofar as teams reduce innovation

time, may expand as firms try to out-race each other. With an increase in team size,

25Furthermore, although the model abstracts from implementation time, we could also imagine that a
given project would be implemented faster when more people are brought to bear. This effect would also
tend to reduce the time lag between an innovator’s inventions.
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we might see an increase in specialization to exploit within-team efficiency possibilities.

The fact that we see increased specialization among solo inventors is less easy to explain

however. It is also difficult to produce the age results through competition. The fact

that the average age at first innovation is increasing over time but showing no variation

across fields poses a particular challenge. As a general matter, increasing specialization

despite increasing educational attainment is difficult to reconcile without appealing to an

increasing educational burden. Another problem with a patent race story, if it is to stand

on its own, is that it must make extreme assumptions to reproduce the data aggregates.

Given historically flat TFP growth and historically flat patent counts, we must imagine

that all the extra research effort is useless: no matter how many people enter R&D, the

number of patent races is fixed and no race is resolved any faster.

4 Conclusion

If technological progress leads to an accumulation of knowledge, then the educational bur-

den on successive generations of innovators will increase. Innovators may compensate by

narrowing their expertise, which serves to reduce their individual capabilities, with nega-

tive implications for growth. This paper explores this possibility in a model that generates

a number of empirical tests. The model predicts that the educational attainment of in-

novators will not vary across technological fields but will rise over time. Data analysis

shows that the age at first innovation, which is a proxy measure for education, is in fact

remarkably consistent across technological areas but is increasing over time at a rate of

0.6 years per decade. The model further predicts that specialization and average team

size will vary across fields and, if the knowledge burden mechanism is sufficiently strong,

specialization and team size will increase as technology advances. Data analysis shows that

specialization and team size do vary considerably across technological areas and both show

a sharp increase over time; specialization is increasing by 6% per decade, U.S. team size by

17% per decade. Furthermore, in cross-section, specialization and team size are positively

correlated, as predicted, with a direct measure of the amount of knowledge underlying each

patent. The knowledge burden mechanism thus provides a consistent explanation for the

range of new evidence. It can also explain the facts standing at the center of the “scale ef-

fects” debate in the growth literature: flat patent counts and flat TFP growth despite rising
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R&D effort. The implication of these facts, understood through the lens of a rising burden

of knowledge, is that growth is relying on an ever increasing and possibly unsustainable rise

in innovative effort.

This paper aims to provide a deeper understanding of key issues in innovation and

growth and particularly to introduce a specific channel — an increasing educational burden

— through which innovation can become harder with time. Further work should extend

the empirical explorations over longer periods of time and, if possible, produce more closely

identified tests for this mechanism and others.

This paper also suggests several further avenues of exploration. If innovators are be-

coming increasingly interdependent in the implementation of ideas, then there may be a

natural tendency for (multiple) equilibria in which researchers concentrate geographically.

From a development perspective, talented students who come, for example, from India to

the United States for a Ph.D. may find their increasingly specialized skills increasingly dif-

ficult to employ outside advanced economies, implying a worsening brain drain problem.

More directly, developing countries may find the absorption of advanced technologies in-

creasingly difficult as the human capital required to cover some fixed area of the knowledge

space becomes increasingly expensive. These issues suggest a role for policy intervention to

solve geographic coordination problems in producing an appropriate set of individuals with

complementary human capital.

A separate set of issues relates to team design. Teamwork is handled in a very simple

manner in the model, but further research might focus on incentive issues in teamwork

as they relate to the output of knowledge. If creative enterprise is increasingly a matter

for teams rather than individuals, how do firms or other institutions maintain incentives

for team members as ideas are developed? As researchers become increasingly narrow in

their specialties, how does an organization maintain "field vision" in choosing broad-impact

avenues of research? These issues can be further explored with theory and may produce

further empirical tests for the burden of knowledge mechanism explored in this paper.
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5 Appendix

Proof that L(t, s) = LR(t) ∀s
This proof proceeds in two steps. First I rule out any equilibrium in which there is zero

mass at a proper subset of points on the circle. Then I show, given the first result, that
innovators will array themselves evenly around the circle.

(1) LR(τ) is the mass of individuals at time τ who are engaged in R&D. Define Gτ as
the set of points on the circle where there is a positive mass of innovators:

Gτ = {s ∈ [0, 1] | L(τ , s) > 0}
The set of points where there is zero mass is defined as the complement of Gτ , Hτ = Gc

τ .
If Gτ is empty, then L(τ , s) = 0 ∀s, which satisfies the proof trivially. Consider the more
interesting and relevant case where Gτ is non-empty. I first prove that Hτ must then be
empty.

By contradiction, assume the set Hτ is non-empty, Hτ 6= ∅. Then there exists at least
one point s0 on the boundary between Gτ and Hτ where for any � > 0 there exists a point
s00 such that either (i) s0 ∈ Gτ , s00 ∈ Hτ , s0 > s00 > s0 − �, or (ii) s0 ∈ Hτ , s00 ∈ Gτ ,
s0 < s00 < s0 + �. Consider the former case.26 For ease of exposition, I will abuse notation
slightly and let L(t, s) represent both the set and the mass of individuals at point s at time
t. Then there must exist some massless innovator i ∈ L(τ , s0) with breadth of expertise b∗i
who chose position s0 at some time t0 ≤ τ . Without loss of generality, choose i such that
b∗i ≤ bj for some j ∈ L(t0, s0), j 6= i. Note further that b∗i > 0 in any equilibrium, by the
arbitrage condition (15), since UR&D

i (b∗i = 0) = 0 but Uwage > 0; hence there must exist an
arbitrarily small � such that 0 < � < b∗i .

The boundary of this individual’s knowledge is s0 + b∗i . If the innovator has an idea
k > b∗i , then the innovator will need teammates for implementation. Define pi(t) such that
∀k > pi(t) the necessary teammates do not exist and ∀k ≤ pi(t) the necessary teammates
do exist. The probability that an idea k is feasible is then F (pi(t)). The innovator’s
expected income at the time of their birth t0 is a generalized version of (6) that allows for
the possibility that an idea is infeasible:

CX(t0)χb∗βi

Z ∞

t0
F (pi(t))L(t, s

0)−σLY (t)e
−φ(t−t0)dt− ¡b∗iD(t0)¢ε (37)

If this individual were to shift to a location s00 ∈ Hτ ⊂ Ht0 , then the access to potential
teammates remains unchanged. (The individual can always hire someone in L(t0, s0) as
a teammate, and everyone else at that point has weakly greater expertise.) Thereforebpi(t) = pi(t)+ �, and the probability that an idea k is feasible is weakly increasing since for
any distribution function F (pi(t) + �) ≥ F (pi(t)).

Therefore, from (37) and the equilibrium condition (14), the choice s0 can only be an
equilibrium for person i ifZ ∞

t0
L(t, s0)−σLY (t)e

−φ(t−t0)dt ≥
Z ∞

t0
L(t, s00)−σLY (t)e

−φ(t−t0)dt (38)

26The proof for case (ii) follows on similar lines; I omit it for brevity.
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Given the continuity of L with time, L(t, s0) > L(t, s00) for all t in some interval [t0, t00].
Therefore, the expected income to innovator i in the interval [t0, t00] must be strictly less
with the choice s0 then with the choice s00. Therefore, innovator i must believe thatZ ∞

t00
L(t, s0)−σLY (t)e

−φ(t−t0)dt >
Z ∞

t00
L(t, s00)−σLY (t)e

−φ(t−t0)dt (39)

Multiplying both sides of this expression by the constant e−φ(t0−t00), we see that in the
subgame for those born at time t00 no person would choose s00. Hence L (t00, s00) is not
increasing, L(t00, s0) > L(t00, s00), and there is no finite t00 at which (39) holds. Hence (38)
cannot hold. Hence, by contradiction, no such point s00 can exist and therefore Hτ = ∅ ∀τ .

(2) Given that Hτ = ∅ ∀τ , innovators’ collective expertise covers all areas of knowledge,
so that all ideas are feasible to implement. The proof that innovators array themselves
evenly around the circle then follows as above. By contradiction, assume an innovator born
at time t0 chooses s0 over some s00 where L(t0, s0) > L(t0, s00). The innovator must believe
(38), and by extension (39). But there is no t00 at which (39) holds. Hence no such point
s00 can exist. Hence no innovator can choose any s0 such that L(t0, s0) > L(t0, s) for any s.
QED

Derivation of the steady-state growth rate

From equation (23), the steady-state growth rate in the economy is defined by,

g = g_
θ
+ gL (40)

To define g_
θ
, note first that the average productivity of innovators is the sum of the

productivity of each cohort weighted by the fraction of that cohort in the population.27

_
θ(t) =

Z t

−∞
θ(τ , t)(gL + φ)e(gL+φ)(τ−t)dτ (41)

The growth rate of θ(τ , t) with respect to τ is just χg + βgb∗ , which is seen by tak-
ing logs of the definition of θ (equation (12)), using the equilibrium result bi = b∗(τ),
and differentiating with respect to τ . We can therefore integrate (41) to find that

_
θ(t) =

θ(t) (gL + φ) / (χg + βgb∗ + gL + φ). The steady-state growth rate in
_
θ(t) is therefore equiv-

alent to the steady-state growth rate in θ(t), so that g = g_
θ
+ gL = gθ + gL.

θ(t) is the productivity of the latest cohort of innovators at the time of their birth. The
growth rate of θ(t) with respect to time is just χg + βgb∗ − σgL, which is seen by taking
logs in the definition of θ, letting τ = t, and differentiating with respect to t. Therefore,

g_
θ
= χg + βgb∗ − σgL (42)

Taking logs in the equilibrium result (20), letting τ = t, and differentiating with respect
to t, the growth rate of b∗ is gb∗ = (1/ε)gv − gD. Noting from (13) that v(t) = θ(t)CLY (t),

27The size of a cohort at its birth is (gL + φ)L(τ), so the surviving size of that cohort at some time
t > τ is (gL + φ)L(τ)e−φ(t−τ), and the fraction of the population L (t) who belong to that cohort is
(gL + φ)e−gL(t−τ)e−φ(t−τ).
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the growth rate in v is the same as the growth rate in the economy: gv = gθ+gL = g. From
(8), the growth rate in the depth of knowledge is gD = δg. Therefore,

gb∗ = (
1

ε
− δ)g

Inserting this into (42), the result into (40), and rearranging produces the expression for
steady-state growth in equation (24).

A generalized condition for team size to increase with specialization

I explore here the evolution of team size when the distribution of k changes with an
individual’s breadth of expertise, b. Define the generalized distribution function by F (k; b)
and the corresponding density function as f(k; b) = dF (k; b)/dk. The average team size for
a cohort with breadth of expertise b is derived just as in (27),

team(b) = n−
n−1X
j=1

F (jb; b) (43)

Noting that F (jb; b) =
R jb
0 f(k; b)dk, we can use Leibniz’s rule to differentiate (43) with

respect to b and thereby define a necessary and sufficient condition for team size to increase
with specialization:

n−1X
j=1

µZ jb

0

df(k; b)

db
dk + jf(jb; b)

¶
> 0⇔ dteam(b)

db
< 0 (44)

The second term on the left hand side is recognized from equation (28) and acts to make
team size increase with specialization. The effect of the first term is ambiguous, how-
ever, so that the effect of specialization on team size cannot be signed without considering
distribution-specific properties.

We can gain some intuition for this condition by considering the simple case where k
is drawn from a uniform distribution. Specifically, let k ∼ U [0, bα], so that f(k; b) = b−α.
Using (44), it is then straightforward to show that α < 1⇔ dteam(b)/db < 0. Noting that
the mean of k is E (k) = 1

2b
α, it is also straightforward to show that α is the elasticity of E(k)

with respect to b. Therefore, we see that team size will be increasing with specialization
so long as the elasticity of E(k) with respect to expertise is less than 1. In other words,
team size will be increasing as long as innovators’ average “reach”, given by E(k), does not
decline faster than their average “grasp”, given by b.

6 Data Appendix

The reader is referred to Hall et al (2001) for a detailed discussion of their patent data set.
This appendix focuses on the age information collected to augment the Hall et al data.

Age data was collected using the website www.AnyBirthday.com, which requires a name
and zip code to produce a match. As is seen in Table A.1, 30% of U.S. inventors listed a zip
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code on at least one of their patent applications, and of these inventors AnyBirthday.com
produced a birth date in 25% of the cases. While the number of observations produced
by AnyBirthday.com is large, it represents only 7.5% of U.S. inventors. This Appendix
explores the causes and implications of this selection. The first question is why zip code
information is available for only certain inventors. The second question is why AnyBirth-
day.com produces a match only one-quarter of the time. The third question is whether
this selection appears to matter.

Table A.2 compares how patent rights are assigned across samples. The table shows
clearly that zip code information is virtually always supplied when the inventor has yet
to assign the rights; conversely, zip code information is never provided when the rights
are already assigned. Patent rights are usually assigned to private corporations (80% of
the time) and remain unassigned in the majority of the other cases (17% of the time).
An unassigned patent indicates only that the inventor(s) have not yet assigned the patent
at the time it is granted. Presumably, innovators who provide zip codes are operating
outside of binding contracts with corporations, universities, or other agencies that would
automatically acquire any patent rights. The zip-code subset is therefore not a random
sample, but is capturing a distinct subset of innovators who, at least at one point, were
operating independently. Despite this distinction, this subset may not be substantially
different from other innovators: the last column of Table A.2 indicates that, when looking
at the other patents produced by these innovators, they have a similar propensity to assign
them to corporations as the U.S. population average.

The nature of the selection introduced by AnyBirthday.com is more difficult to iden-
tify. The website reports a database of 135 million individuals and reports to have built
its database using “public records”. Access to public records is a contentious legal issue.28

Public disclosure of personal information is proscribed at the federal level by the Freedom
of Information Act and Privacy Act of 1974. At the state and local level however, rules
vary. Birth date and address information are both available through motor vehicle depart-
ments and their electronic databases are likely to be the main source of AnyBirthday.com’s
records.29 The availability of birth date information is therefore very likely to be related
to local institutional rules regarding motor vehicle departments. Geography thus will in-
fluence the presence of innovators in the age sample, and a further issue in selection may
involve the geographic mobility of the innovator, among other factors. The influence of this
selection, together with the implications of assignment status, can be assessed by comparing
observable means in the population across subsamples.

Table A.3 considers average team size, which is a source of further differences. Patents
with provided zip codes have smaller team sizes than the U.S. average; team sizes in the
subset of these patents for which the age of one innovator is known are slightly larger, but

28Repeated requests to AnyBirthday.com to define their sources more explicitly have yet to produce a
response.
29A federal law, the Driver’s Privacy Protection Act of 1994, was introduced to give individuals increased

privacy. The law requires motor vehicle departments to receive explicit prior consent from an individual
before disclosing their personal information. However, the law makes an exception for cases where motor
vehicles departments provide information to survey and marketing organizations. In that case, individual’s
consent is assumed unless the individual has opted-out on their own initiative. See Gellman (1995) for an
in-depth discussion of the laws and legal history surrounding public records.
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still smaller than the U.S. average. Controlling for other patent observables, in particular
the assignment status, reduces the mean differences and brings the age sample quite closely
in line with the U.S. mean. (See the last two columns of the table.) Having examined a
number of other observables in the data, such as citations received and average tree size,
I find that relatively small differences tend to exist in the raw data, and that these can
be either entirely or largely explained by controlling for assignment status and team size.
Most importantly, the age results in the text are all robust to the inclusion of assignment
status, team size, and any other available controls.

Finally, looking at team size, specialization, and time lag trends in the age subsample,
the results are similar in sign and significance as those presented in Section 4. The rate of
increase in specialization is larger, and the rate of increase in team size is smaller. The time
lag shows no trend. Reexamining trends in the entire data set by assignment status, I find
that the team size trend is weaker among the unassigned category, which likely explains the
weaker trend in the age subset. Similarly, I find that the specialization trend is stronger
among the unassigned category, which likely explains the stronger trend in the age subset.

I conclude therefore that while the age subset is not a random sample of the U.S.
innovator population, the differences tend to be explainable with other observables and, on
the basis of including such observables in the analysis, the age results appear robust.
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Table 1:  Trends in Inventors per Patent 
  

Dependent Variable:  Inventors per Patent 
 (1) (2) (3) (4) (5) (6) (7) 

 
Application Year 
 

 
.0293 

(.0001) 

 
.0261 

(.0001) 

 
.0262 

(.0001) 
 

 
.0251 

(.0001) 

 
.0244 

(.0002) 

 
.0306 

(.0002) 
 

 
.0180 

(.0003) 
 

 
Foreign Patent 
 

 
-- 

 
.444 

(.002) 

 
.416 

(.002) 

 
.141 

(.004) 

 
.146 

(.004) 

 
US Only 

 
Foreign 

Only 
 
Broad 

 

 
-- 

 
Yes 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

Te
ch

no
lo

gi
ca

l 
Fi

el
d 

C
on

tro
ls

 

 
Narrow 

 
-- 

 
-- 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Assignee Code 

 
-- 

 
-- 

 
-- 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Number of  
Observations 

 
2,016,377 

 
2,016,377 

 
2,016,377 

 
2,016,377 

 
1,506,956 

 
1,123,310 

 
893,067 

 
Period 
 

 
1975-
1999 

 
1975-
1999 

 
1975-
1999 

 
1975- 
1999 

 
1975- 
1996 

 
1975-
1999 

 
1975-
1999 

Mean of Dependent 
Variable 

 
2.03 

 
2.03 

 
2.03 

 
2.03 

 
1.97 

 
1.82 

 
2.29 

 
Per-decade Trend as % 
of Period Mean 

 
14.4% 

 
12.9% 

 
12.9% 

 
12.4% 

 
12.4% 

 
16.8% 

 
7.9% 

 
R2 

 
.02 

 
.08 

 
.10 

 
.12 

 
.13 

 
.12 

 
.10 

 
NOTES 
(i) Regressions are OLS with standard errors in parentheses.  Specifications (1) through (4) consider the entire 
universe of patents applied for between 1975 and 1999.  Specification (5) considers only patents that were granted 
within three years after application (see discussion in text).  Specifications (6) and (7) present separate trends for 
domestic and foreign source patents. 
(ii) Foreign Patent is a dummy variable to indicate whether the first inventor listed with the patent has an address 
outside the U.S.. 
(iii) “Broad” technological controls include dummies for each of the 6 categories in Hall et al.’s most aggregated 
technological classification.  “Narrow” technological controls include dummies for each category of their 36-category 
classification. 
(iv) Upward trends persist when run separately for each technological field.  Using the broad classification (six 
categories), the trends range from a low of .018 for “Other” to a high of .037 for “Chemical”.  Using the narrower 
classification scheme (thirty-six categories), the trends range from a low of .007 for “Apparel &Textile” to .051 for 
“Organic Compounds”.  The smallest t-statistic for any of these trends is 7.76. 
(v) Assignee code controls are seven dummy variables that define who holds the rights to the patent.  Most patent 
rights are held by US or foreign corporations (80%), while a minority remain unassigned (17%) at the time the patent 
is issued.  Table A.2 describes the assignee codes in further detail.  Running the time trends separately for the 
individual assignee codes shows that the team size trends range from a low of .005 for the unassigned category to a 
high of .039 for US non-government institutions.  The lowest t-statistic for any of these trends is 5.38. 

 



Table 2:  Trends in Age at First Innovation 
  

Dependent Variable:  Age at application 
 (1) (2) (3) (4) (5) (6) (7) 

 
Application Year 
 

 
.0657 

(.0095) 

 
.0666 

(.0095) 

 
.0671 

(.0095) 

 
.0671 

(.0099) 

 
.0687 

(.0097) 

 
.0530 

(.0107) 

 
.0584 

(.0109) 
 
Broad 

 

 
-- 

 
Yes 

 
-- 

 
-- 

 
-- 

 
-- 

 
-- 

Te
ch

no
lo

gi
ca

l 
Fi

el
d 

C
on

tro
ls

 

 
Narrow 

 
-- 

 
-- 

 
Yes 

 
Yes 

 
Yes 

 
-- 

 
Yes 

 
 
Assignee Code 

 
-- 

 
-- 
 

 
-- 

 
Yes 

 
Yes 

 
-- 

 
Yes 

 
Team Size 

 
-- 

 
-- 

 
-- 

 
-- 
 

 
-.0630 
(.0273) 

 
-- 

 
-.0348 
(.0306) 

 
Number of observations 

 
6,541 

 
6,541 

 
6,541 

 
6,541 

 
6,541 

 
5,102 

 
5,102 

Period 
 
 

1985-
1999 

1985-
1999 

1985-
1999 

1985-
1999 

1985-
1999 

1985-
1999 

1985-
1999 

Age Range 
 

25-35 25-35 25-35 25-35 25-35 23-33 23-33 

Mean of Dependent 
Variable 

 
31.0 

 
31.0 

 
31.0 

 
31.0 

 
31.0 

 
29.3 

 
29.3 

 
Per-decade Trend as % 
of Period Mean 

 
2.1% 

 
2.1% 

 
2.2% 

 
2.2% 

 
2.2% 

 
1.8% 

 
2.0% 

 
R2 

 
.007 

 
.010 

 
.020 

 
.020 

 
.021 

 
.005 

 
.018 

NOTES 
(i) Regressions are OLS, with standard errors in parentheses.  All regressions look only at those innovators for whom 
we have age data and who appear for the first time in the data set in or after 1985.  Specifications (1) through (5) 
consider those innovators who appear for the first time between ages 25 and 35.  Specifications (6) and (7) consider 
those innovators who appear for the first time between ages 23 and 33. 
(ii) “Broad” technological controls include dummies for each of the 6 categories in Hall et al.’s most aggregated 
technological classification.  “Narrow” technological controls include dummies for each classification in their 36-
category measure.  The upward age trend persists when run separately in each of Hall et al’s broad technology classes.   
These trends are significant in 5 of the 6 categories, with similar trend coefficients as when the data are pooled.  
Upward trends are also found in 29 of 36 categories when using Hall et al.’s narrow technology classification.  Here 
12 categories show significant upward trends.  Sample sizes drop considerably when the data is divided into these 36 
categories.  The one case of a significant downward trend (category #23, Computer Peripherals) has 42 observations. 
(iii) Assignee code controls are seven dummy variables that define who holds the rights to the patent.  Table A.2 
describes the assignee codes in further detail.  The upward age trends persist when run separately for each assignee 
code and are similar in magnitude to the trends in the table above. 



 Table 3:  Trends in Probability of Field Jump 
  

Dependent Variable:  Probability of Switching Technological Field 
 (1) 

414 
(2) 
414 

(3) 
36 

(4) 
36 

(5) 
6 

(6) 
6 

(7) 
414 

(8) 
414 

 
Application Year 
 

 
-3.4e-3 
(.19e-3) 

 
-3.2e-3 
(.19e-3) 

 
-2.5e-3 
(.19e-3) 

 
-2.8e-3 
(.19e-3) 

 
-1.9e-3 
(.17e-3) 

 
-2.3e-3 
(.17e-3) 

 
-5.1e-3 
(.12e-3) 

 
-3.0e-3 
(.11e-3) 

 
Foreign Patent 
 

 
-- 

 
.0076 

(.0039) 

 
-- 

 
-.0041 
(.0038) 

 
-- 

 
.0002 

(.0035) 

 
-- 

 
-.0005 
(.0029) 

 
Time Between 
Applications 

 
-- 

 
.0225 

(.0012) 

 
-- 

 
.0206 

(.0012) 

 
-- 

 
.0154 

(.0011) 

 
-- 

 
.0228 

(.0004) 
 
Technological 
Field Controls 
(first patent) 

 
-- 

 
Yes 

 
-- 

 
Yes 

 
-- 

 
Yes 

 
-- 

 
Yes 

 
Assignee Code 
(first patent) 

 
-- 

 
Yes 

 
-- 

 
Yes 

 
-- 

 
Yes 

 
-- 

 
Yes 

 
Number of 
observations 

 
215,855 

 
215,855 

 
215,855 

 
215,855 

 
215,855 

 
215,855 

 
359,405 

 
359,405 

 
Period 
 

1975-
1993 

1975-
1993 

1975-
1993 

1975-
1993 

1975-
1993 

1975-
1993 

1975-
1999 

1975-
1999 

Mean of 
Dependent 
Variable 

 
.535 

 
.535 

 
.423 

 
.423 

 
.294 

 
.294 

 
.556 

 
.556 

 
Per-decade 
Trend as % of 
Period Mean 

 
-6.4% 

 
-6.0% 

 
-5.9% 

 
-6.4% 

 
-6.5% 

 
-7.8% 

 
-9.4% 

 
-5.6% 

 
(Pseudo) R2 

 
.0011 

 
.018 

 
.0006 

 
.019 

 
.0005 

 
.017 

 
.004 

 
.026 

NOTES 
(i) Results are for probit estimation, with coefficients reported at mean values and z-statistics in parentheses.  The coefficient 
for the Foreign dummy is reported over the 0-1 range. 
(ii) The dependent variable is 0 if an inventor does not switch fields between two consecutive innovations.  The dependent 
variable is 1 if the inventor does switch fields.  Column headings define the field classification used to determine the 
dependent variable:  “414” indicates the 414-category technological class definition of the USPTO; “36” and “6” refer to the 
aggregated measures defined by Hall et al (2001). 
(iii) Specifications (1) through (6) consider “fast” innovators -- only those consecutive patents with no more than 3 years 
between applications and with no more than 3 years delay between application and grant.  (See discussion in text.)   
Specifications (7) and (8) consider all consecutive patents. 
(iv) Technological field controls are dummies for the 36 categories defined by Hall et al (2001).  The reported regressions 
use the technological field of the initial patent.  Using the field of the second patent has no effect on the results.  Running the 
regressions separately by technology category shows that the trends persist in 6 of 6 categories using Hall et al.’s broad 
technology classification and 34 of 36 categories using Hall et al’s narrow classification with significant trends in 20. 
(v) Assignee code controls are seven dummy variables that define who holds the rights to the patent.  Table A.2 describes the 
assignee codes in further detail.  The declining probability of field jump persists when the trend is examined within each 
assignment code, although the significance of the trend disappears in the rarer classifications. 

 



Table 4:  Trends in Time Lag 
  

Dependent Variable:  Time Lag Between Consecutive Patent Applications 
 (1) (2) (3) (4) (5) (6) 

 
Application Year 
 

 
0.30e-3 
(.14e-3) 

 
1.2e-3 

(.14e-3) 

 
0.54e-3 
(.14e-3) 

 
2.2e-3 

(.35e-3) 

 
2.8e-3 

(.35e-3) 

 
2.0e-3 

(.35e-3) 
 
Foreign Patent 
 

 
-- 

 
-.0736 
(.0016) 

 
-.0591 
(.0016) 

 
-- 

 
-.0526 
(.0042) 

 
-.0522 
(.0042) 

 
Team Size 
(second patent) 

 
-- 

 
-.0156 
(.0004) 

 
-.0099 
(.0004) 

 
-- 

 
-- 

 
-- 

 
Same Team Size 
Dummy 

 
-- 

 
-.0474 
(.0016) 

 
-.0515 
(.0016) 

 
-- 

 
-- 

 
-- 

 
Field Jump Dummy 

 
-- 

 
.115 

(.002) 

 
.115 

(.002) 

 
-- 

 
.081 

(.004) 

 
.083 

(.004) 
 
Technological Field 
Controls  
(second patent) 

 
-- 

 
-- 

 
Yes 

 

 
-- 

 

 
-- 

 
Yes 

 
Number of 
observations 

 
1,430,144 

 
1,430,144 

 
1,430,144 

 
215,855 

 
215,855 

 
215,855 

Period 
 

1975-1993 1975-1993 1975-1993 1975-1993 1975-1993 1975-1993 

Mean of Dependent 
Variable 
(see note (iv)) 

.749 .749 .749 .793 .793 .793 

 
Per-decade Trend as 
% of Period Mean 
(see note (iv)) 

 
0.4% 

 
1.6% 

 
0.7% 

 
2.8% 

 
3.5% 

 
2.5% 

 
R2 

 
.0000 

 
.0077 

 
.0157 

 
.0002 

 
.0028 

 
.0136 

NOTES 
(i) Regressions are OLS, with standard errors in parentheses. 
(ii) All specifications consider “fast” innovators -- only those consecutive patents with no more than 3 years 
between applications and with no more than 3 years delay between application and grant.  (See discussion in text.)    
(iii) Specifications (1) to (3) consider all consecutive patents in this time period.  Specifications (4) through (6) 
consider time lags by solo inventors. 
(iv) The dependent variable is an integer varying between 0 and 3.  Period means are underestimated due to the 
integer nature of the application year, because two applications in the same calendar year are calculated to have a 
time lag of zero.  This biases down the mean and biases up the percentage trend. 
(v) Technological field controls are dummies for the 36 categories defined by Hall et al (2001). 

 



Table 5:  Mean differences across Technological Categories 
         

Technological Classification 
(Hall et al. 2001) 

 Age at First 
Innovation 

Inventors per 
Patent 

Probability of 
Field Jump 

6 36 Code Obs Mean Obs Mean Obs Mean 
Agriculture, Food, Textiles 11 12 31.1 16,100 2.41 2,500 0.48 
Coating 12 53 29.2 29,800 2.23 4,300 0.64 
Gas 13 17 30.3 9,200 1.96 1,700 0.59 
Organic Compounds 14 51 29.5 59,600 2.56 7,000 0.34 
Resins 15 44 29.3 67,200 2.51 7,500 0.36 
Miscellaneous—Chemical 19 331 29.3 197,100 2.23 29,500 0.43 C

he
m

ic
al

 (1
) 

Entire category  508 29.4 379,200 2.33 52,100 0.43 
        
Communications 21 264 29.3 92,700 1.99 15,000 0.41 
Computer Hardware & Software 22 162 29.8 80,400 2.26 10,200 0.44 
Computer Peripherals 23 37 29.3 22,100 2.37 2,800 0.51 
Information Storage 24 43 28.9 41,300 2.21 6,700 0.39 
Entire category  506 29.4 236,700 2.16 34,500 0.42 C

om
pu

te
rs

 &
 

C
om

m
un

ic
at

io
ns

  
(2

) 

        
Drugs 31 74 29.9 65,200 2.90 6,300 0.25 
Surgery & Medical Instruments 32 268 29.8 59,900 1.86 12,400 0.29 
Biotechnology 33 46 30.5 22,700 2.75 1,800 0.38 
Misc—Drugs & Medical 39 68 29.1 13,600 1.66 3,500 0.35 D

ru
gs

 &
 

M
ed

ic
al

 (3
) 

Entire category  456 29.8 161,500 2.39 23,800 0.29 

         
Electrical Devices 41 111 29.3 61,000 1.77 12,700 0.48 
Electrical Lighting 42 90 29.6 31,300 1.96 5,700 0.43 
Measuring & Testing 43 116 29.2 57,700 1.94 10,000 0.51 
Nuclear & X-rays 44 52 29.7 30,200 2.08 4,700 0.50 
Power Systems 45 128 29.4 68,900 1.94 13,000 0.51 
Semiconductor Devices 46 49 29.3 44,700 2.25 7,100 0.34 
Misc—Electrical 49 104 29.1 49,100 1.97 8,900 0.51 El

ec
tri

ca
l &

 
El

ec
tro

ni
c 

(4
) 

Entire category  650 29.3 343,300 1.97 61,700 0.48 

         
Materials Processing & Handling 51 241 29.4 100,000 1.79 21,700 0.48 
Metal Working 52 87 28.8 58,100 2.11 10,400 0.54 
Motors, Engines & Parts 53 83 29.4 73,300 1.85 16,200 0.41 
Optics 54 57 29.0 48,000 2.15 8,100 0.37 
Transportation 55 273 29.0 56,800 1.66 12,000 0.45 
Misc—Mechanical 59 449 29.1 96,800 1.64 22,400 0.49 

M
ec

ha
ni

ca
l (

5)
 

Entire category  1,190 29.1 433,300 1.83 90,500 0.46 

         
Agriculture, Husbandry, Food 61 250 29.1 41,200 1.75 7,600 0.41 
Amusement Devices 62 269 29.4 20,900 1.41 4,300 0.37 
Apparel & Textile 63 211 29.1 32,400 1.57 7,600 0.37 
Earth Working & Wells 64 100 29.6 27,800 1.69 6,600 0.36 
Furniture, House Fixtures 65 346 29.1 41,000 1.42 9,400 0.50 
Heating 66 58 30.0 26,300 1.75 6,100 0.48 
Pipes & Joints 67 45 29.2 17,100 1.58 4,500 0.61 
Receptacles 68 298 29.4 40,700 1.51 10,100 0.47 
Misc—Others 69 846 29.2 167,800 1.73 35,200 0.48 

O
th

er
s (

6)
 

Entire category  2,423 29.3 415,600 1.64 91,000 0.46 
NOTES 
(i) Age at first innovation includes observations of those innovators who appear after 1985 in the data set and 
between the ages of 23 and 33.  Results are similar, with higher mean and even less variance, for 25-35 year olds. 
(ii) Probability of field jump is probability of switching categories for solo innovators using 36-category measure. 



Table 6:  Inventors per Patent vs. Tree Size 
  

Dependent Variable:  Inventors per Patent 
 (1) (2) (3) (4) (5) (6) (7) 

 
Normalized Variation in 
Tree Size 

 
.0849 

(.0010) 

 
.0961 

(.0010) 

 
.0995 

(.0011) 

 
.120 

(.001) 

 
.133 

(.001) 

 
.107 

(.001) 

 
.152 

(.001) 
 
Normalized Variation in 
Tree Size, Squared 

 
.0609 

(.0007) 

 
.0545 

(.0007) 

 
.0545 

(.0007) 

 
.0341 

(.0007) 

 
.0257 

(.0009) 

 
.0356 

(.0011) 

 
.0404 

(.0009) 
 
Foreign Patent 
 
 

 
-- 

 
.446 

(.002) 

 
.442 

(.002) 

 
.420 

(.002) 

 
US Only 

 
Foreign 

Only 

 
.371 

(.003) 

Normalized Variation in 
Direct Citations Made 

-- -- -.0094 
(.0011) 

-- -- -- -- 

 
Technological Field 
Controls 
 

 
-- 

 
-- 

 
-- 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

Application Year 
Dummies 

Yes Yes Yes Yes Yes Yes Yes 

 
Number of observations 

 
1,969,908 

 
1,969,908 

 
1,969,908 

 
1,969,908 

 
1,103,402 

 
866,506 

 
1,330,210 

Period 
 

1975- 
1999 

1975-
1999 

1975- 
1999 

1975-
1999 

1975-
1999 

1975-
1999 

1985-
1999 

 
Mean of Dependent 
Variable 

 
2.02 

 
2.02 

 
2.02 

 
2.02 

 
1.82 

 
2.27 

 
2.13 

 
R2 

 
.026 

 
.050 

 
.050 

 
.100 

 
.090 

 
.083 

 
.079 

NOTES 
(i) Regressions are OLS with standard errors in parentheses.  Specifications (1) through (4) consider the entire universe 
of patents applied for between 1975 and 1999.  Specification (5) and (6) consider separately patents from domestic vs. 
foreign sources.  Specification (7) considers cross-sections from the later part of the time period. 
(ii) Normalized Variation in Tree Size is the deviation from the year mean tree size, divided by the year standard 
deviation in tree size.  “Tree size” is the log of the number of nodes in the citations tree behind any patent. 
(iii) Normalized Variation in Direct Citations Made captures variation in the number of citations to prior art listed on a 
patent application.  It is the deviation from the year mean number of citations, divided by the year standard deviation in 
the number of citations. 
(iv) Technological field controls include dummies for each of Hall et al.’s 36-category measure. 
(v) The number of observations here is slightly smaller than for the time trend analysis in Table 1 because a few patents 
do not cite other US patents, hence no citation tree can be built; these patents are dropped from the analysis. 

 



Table 7:  Age vs. Tree Size 
  

Dependent Variable:  Age at application for first patent 
 (1) (2) (3) (4) (5) (6) (7) (8) 

 
Normalized Variation 
in Tree Size 
 

 
-.007 
(.032) 

 
-.005 
(.036) 

 
.114 

(.035) 

 
.084 

(.040) 

 
.059 

(.043) 

 
.097 

(.030) 

 
.113 

(.046) 
 

 
.030 

(.026) 

Team Size 
 
 

-- -.054 
(.027) 

-- -.036 
(.030) 

-.038 
(.030) 

-.024 
(.025) 

.008 
(.035) 

-.029 
(.019) 

Normalized Variation 
in Direct Citations 
Made 

-- -- -- -- .064 
(.044) 

-- -- -- 

Technological Field 
Controls 
 

-- Yes -- Yes Yes Yes Yes Yes 

Application Year 
Dummies 

Yes Yes Yes Yes Yes Yes Yes Yes 

 
Number of 
observations 

 
6,486 

 
6,486 

 
5,058 

 
5,058 

 
5,058 

 
8,434 

 
3,630 

 
3,588 

Period 
 
 

1985-
1999 

1985-
1999 

1985-
1999 

1985-
1999 

1985-
1999 

1975-
1999 

1985-
1999 

1985-
1999 

Age Range 25-35 25-35 23-33 23-33 23-33 23-33 21-31 28-33 
 
Mean of Dependent 
Variable 

 
31.0 

 
31.0 

 
29.34 

 
29.3 

 
29.2 

 
29.2 

 
27.7 

 
30.7 

 
R2 

 
.009 

 
.022 

 
.009 

 
.021 

 
.012 

 
.020 

 
.025 

 
.020 

NOTES 
(i) Regressions are OLS, with standard errors in parentheses.  All regressions look only at those innovators for 
whom we have age data.  Specifications (1) and (2) consider first innovations in the 25-35 age window.  
Specifications (3) through (6) consider innovators in the 23-33 age window.  Specification (7) considers 
slightly younger innovators, and Specification (8) considers the latter half of the 23-33 age window.  
Specifications (6) considers cross-sections pooled over the entire time period; the other specifications focus on 
the post-1985 period, for which we can be confident that we are witnessing an innovator’s first patent. 
(ii) Normalized Variation in Tree Size is the deviation from the year mean tree size, divided by the year 
standard deviation in tree size.  “Tree size” is the log of the number of nodes in the citations tree behind any 
patent. 
(iii) Normalized Variation in Direct Citations Made captures variation in the number of citations to prior art 
listed on a patent application.  It is the deviation from the year mean number of citations, divided by the year 
standard deviation in the number of citations. 
(iv) The number of observations here is slightly smaller than for the time trend analysis in Table 2 because a 
few patents do not cite other US patents, hence no citation tree can be built; these patents are dropped from the 
analysis. 
(v) Technological field controls include dummies for each of Hall et al.’s 36-category measure. 

 
 



Table 8:  Field Jump vs. Tree Size 
  

Dependent Variable:  Probability of Switching Technological Field 
 (1) (2) (3) (4) (5) (6) 

 
Normalized Variation 
in Tree Size 
 

 
-.0072 
(.0008) 

 
-.0074 
(.0008) 

 
-.0059 
(.0008) 

 
-.0095 
(.0009) 

 
-.0144 
(.0012) 

 

 
-.0184 
(.0017) 

Foreign Patent 
 
 

-- -.0125 
(.0018) 

-.0108 
(.0018) 

-.0129 
(.0018) 

-.0135 
(.0023) 

.0032 
(.0032) 

 
Time Between 
Applications 

-- -- .0226 
(.0004) 

.0232 
(.0004) 

.0215 
(.0012) 

.0143 
(.0017) 

 
Technological Field 
Controls (first patent) 

 
-- 

 
-- 

 
-- 

 
Yes 

 
Yes 

 
Yes 

 
Application Year 
Dummies 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Number of observations 

 
353,762 

 
353,762 

 
353,762 

 
353,762 

 
212,274 

 
110,511 

Period 
 
 

1975-
1999 

1975-
1999 

1975-
1999 

1975-
1999 

1975-
1993 

1985-
1993 

 
Mean of Dependent 
Variable 

 
.551 

 
.551 

 
.551 

 
.551 

 
.536 

 
.520 

 
(Pseudo) R2 

 
.0039 

 
.0039 

 
.0117 

 
.0251 

. 

 
.0171 

 
.0159 

NOTES 
(i) Results are for probit estimation, with coefficients reported at mean values and z-statistics in 
parentheses.  The coefficient for the Foreign dummy is reported over the 0-1 range.  Only solo inventors 
are considered.  Specifications (1) through (4) consider the entire set of solo inventors.  Specification (5) 
considers only those solo inventors who meet the criteria in Specifications (1) through (6) in Table 3 (to 
help control for any truncation bias in the specialization measure – see the discussion of Table 3 in the 
text). Specification (6) considers the same data as Specification (5), but only looks at cross-sections in 
the later part of the time period.  
(ii) The dependent variable is 0 if an inventor does not switch fields between two consecutive 
innovations.  The field is defined using the 414-category technological class definition of the USPTO. 
(iii) Normalized Variation in Tree Size is the deviation from the year mean tree size, divided by the year 
standard deviation in tree size.  “Tree size” is the log of the number of nodes in the citations tree behind 
any patent. 
(iv) Technological field controls include dummies for each of Hall et al.’s 36-category measure. 

 



 Table A.1:  Number of Observations at Each Stage of Selection 
 
 

 
Number of 

Observations 

 
Percentage of 

Row (3) 

 
Percentage of 

Row (4) 

 
Percentage of 
Row Above 

 
(1) Patents Granted 
 

 
2,139,313 

   

(2) Inventors Worldwide 
 

4,301,229    

 
(3) Unique Inventors 
Worldwide 
 

 
1,411,842 

   

(4) Unique Inventors with US 
Address 
 

752,163 53.3%  53.3% 

(5) Unique Inventors, US 
Address, Zip Code 
 

224,152 15.9% 29.8% 29.8% 

(6) Unique Inventors, US 
Address, Zip Code, Unique 
Match from AnyBirthday.com 
  

56,281 4.0% 7.5% 25.1% 

NOTES    
(i) Observation counts consider the 1975-1999 period. 
(ii) A “unique inventor” is defined by having same first name, last name, and middle initial. 
 
 

Table A.2:  The Assignment of Patent Rights 
   
     Birth Data 
Assignment Status All 

Patents 
US 

Patents 
US Patents  
No zip code 

US Patents 
Zip code 

Direct 
Match 

Other 
Patents 

 
Unassigned 
 

 
17.2% 

 
22.4% 

 
0.4% 

 
98.3% 

 
97.9% 

 
26.6% 

US non-govt organization 
 

43.9% 72.9% 94.1% 0.0% 0.0% 65.7% 

Non-US non-govt organization 
 

36.2% 1.1% 1.4% 0.0% 0.0% 3.4% 

Other assignment 
 

2.7% 3.5% 4.1% 1.7% 2.1% 4.4% 

NOTES 
(i) The first column considers all patent observations in the 1975-1999 period (2.1 million observations). 
(ii) US patents are those for which first inventor listed with the patent has a US address.   
(iii) The Birth Data columns consider those US patents with zip code information for which AnyBirthday.com 
produced a birth date.  The first Birth Data column considers the specific patents on which AnyBirthday.com was 
able to match.  The last column considers all other patents by that innovator, identifying the innovator by last name, 
first name, and middle initial. 
(iv) Unassigned patents are those for which the patent rights were still held by the original inventor(s) at the time 
the patent was granted; these patents may or may not have been assigned after the grant date. 
(v) Non-government organizations are mainly corporations but also include universities. 
(vi) Other assignment includes assignments to:  (a) US individuals; (b) Non-US individuals; (c) the US government; 
and (d) non-US governments. 



 
 

Table A.3:  Inventors per Patent, Mean Differences between Samples 
  

Dependent Variable:  Inventors per patent 
 (1) (2) (3) (4) (5) 
 

US Address 
dummy 

 
-.315 

(.0020) 

 
-.339 

(.0020) 

 
-.300 

(.0020) 

 
-.124 

(.0049) 

 
-.103 

(.0048) 
 

US Address and Zip Code 
dummy 

 
-.786 

(.0033) 

 
-.670 

(.0033) 

 
-.769 

(.0032) 

 
-.155 

(.0069) 

 
-.176 

(.0066) 
 

US Address, Zip Code, 
and AnyBirthday.com 
Direct Match dummy 

 
.237 

(.0068) 

 
.246 

(.0067) 

 
.212 

(.0067) 

 
.243 

(.0067) 

 
.228 

(.0066) 

 
Constant 

 

 
2.28 

(.0014) 

 
2.57 

(.0023) 

 
1.96 

(.0052) 

 
1.45 

(.0042) 

 
1.56 

(.0067) 
 

Technological Category 
dummies 

 

 
No 

 
Yes 

 
No 

 
No 

 
Yes 

 
Grant Year dummies 

 

 
No 

 
No 

 
Yes 

 
No 

 
Yes 

 
Assignee Code dummies 

 

 
No 

 
No 

 
No 

 
Yes 

 
Yes 

 
R2 

 

 
.0555 

 
.0825 

 
.0756 

 
.0757 

 
.1162 

NOTES 
(i) Regressions consider means in the entire dataset (2.1 million patent observations), covering the 1975-
1999 time period.  Standard errors are in parentheses. 
(ii) Dummy variables are nested:  The second row captures a subset of the first.  The third row captures a 
subset of the second. 
(iii) Innovators for whom AnyBirthday.com produces a birth date are often involved with multiple 
innovations over the 1975-1999 period.  The patents used for comparison in this table are those patents for 
which AnyBirthday.com produced the direct match. 
(iv) Regressions with technological category controls are reported using the 6-category measure of Hall et 
al (2001).  Results using the 36-category measure are similar. 
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Figure 1:  Basic Time Trends 


